• 제목/요약/키워드: yttria-stabilized zirconia coat

검색결과 12건 처리시간 0.022초

리튬용융염에서 플라즈마 용사된 부분안정화 지르코니아 코팅층의 고온부식 거동 (Hot Corrosion Behavior of Plasma-Sprayed Partially Stabilized Zirconia Coatings in a Lithium Molten Salt)

  • 조수행;홍순석;강대승;박병흥;허진목;이한수
    • 대한금속재료학회지
    • /
    • 제46권10호
    • /
    • pp.646-651
    • /
    • 2008
  • The electrolytic reduction of spent oxide fuel involves the liberation of oxygen in a molten LiCl electrolyte, which results in a chemically aggressive environment that is too corrosive for typical structural materials. It is essential to choose the optimum material for the process equipment handling molten salt. IN713LC is one of the candidate materials proposed for application in electrolytic reduction process. In this study, yttria-stabilized zirconia (YSZ) top coat was applied to a surface of IN713LC with an aluminized metallic bond coat by an optimized plasma spray process, and were investigated the corrosion behavior at $675^{\circ}C$ for 216 hours in the molten salt $LiCl-Li_2O$ under an oxidizing atmosphere. The as-coated and tested specimens were examined by OM, SEM/EDS and XRD, respectively. The bare superalloy reveals obvious weight loss, and the corrosion layer formed on the surface of the bare superalloy was spalled due to the rapid scale growth and thermal stress. The top coatings showed a much better hot-corrosion resistance in the presence of $LiCl-Li_2O$ molten salt when compared to those of the uncoated superalloy and the aluminized bond coatings. These coatings have been found to be beneficial for increasing to the hot-corrosion resistance of the structural materials for handling high temperature lithium molten salts.

NiCoCrAlY 및 NiAl bond coat를 사용한 Thermal Barrier Coating의 고온안정성에 미치는 Pt의 영향 (Effect of Pt on the High Temperature Stability of NiCoCrAlY or NiAl Bond Coat in the Thermal Barrier Coating System)

  • 구성모;김길무
    • 한국재료학회지
    • /
    • 제15권6호
    • /
    • pp.375-381
    • /
    • 2005
  • High temperature oxidation behavior of thermal barrier coating (TBC) system (IN738 substrate + NiCoCrAlY or NiAl bond coat with or without Pt + yttria stabilized zirconia) prepared by air plasma spray (APS) process has been studied in order to understand the effect of Pt addition to bond coat on the stability of TBC system. Specimens were oxidized in thermal cycling and isothermal oxidation test at $1100^{\circ}C$. The Pt addition in TBC system with NiCoCrAlY bond coat showed a longer life time compared to that without addition of Pt. Pt addition to TBC system is believed to help the formation of more stable thermally grown oxide, $Al_2O_3$, at the TBC/bond coat interface, leading to a longer lifetime of TBC system.

Evaluation of Degradation Characteristics of Thermal Barrier Coating on Gas Turbine Blades

  • Jung, Yongchan;Kim, Mintae;Lee, Juhyeung;Ahn, Jamin;Kim, Kihong
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제2권2호
    • /
    • pp.273-278
    • /
    • 2016
  • In order to evaluate the lifespan of high-temperature parts with thermal barrier coating in gas turbines used for power generation, this study was performed on an 80 MW-class gas turbine exceeding 24 k equivalent operating hours. Degradation characteristics were evaluated by analyzing the YSZ (Yttria Stabilized Zirconia) top coat, which serves as the thermal barrier coating layer, the NiCrAlY bond coat, and interface layers. Microstructural analysis of the top, middle, and bottom sections showed that Thermal Growth Oxide (TGO) growth, Cr precipitate growth within the bond coat layer, and formation of diffusion layer occur actively in high-temperature sections. These microstructural changes were consistent with damaged areas of the thermal barrier coating layer observed at the surface of the used blade. The distribution of Cr precipitates within the bond coat layer, in addition to the thickness of TGO, is regarded as a key indicator in the evaluation of degradation characteristics.

플라즈마 용사 및 전자빔 물리기상 증착법으로 제조된 4YSZ 코팅의 고온마찰마모 거동 (High Temperature Tribology Behavior of 4YSZ Coatings Fabricated by Air Plasma Spray (APS) and Electron Beam Physical Vapor Deposition (EB-PVD))

  • 양영환;박찬영;이원준;김선주;이성민;김성원;김형태;오윤석
    • 한국표면공학회지
    • /
    • 제46권6호
    • /
    • pp.258-263
    • /
    • 2013
  • 4 mol% Yttria-stabilized zirconia (4YSZ) coatings are fabricated by Air Plasma Spray (APS) and Electron Beam Physical Vapor Deposition (EB-PVD) with top coating of thermal barrier coating (TBC). NiCrAlY based bond coat is prepared as 150 ${\mu}m$ thickness by conventional APS (Air Plasma Spray) method on the NiCrCoAl alloy substrate before deposition of top coating. Each 4YSZ top coating shows different tribological behaviors based on the inherent layer structures. 4YSZ by APS which has splat-stacked structure shows lower friction coefficient but higher wear rate than 4YSZ by EB-PVD which has columnar structure. For 4YSZ by APS, such results are expected due to the sliding wear accompanied with local delamination of splats.

전자빔을 이용한 물리기상증착법으로 제조된 열차폐용 4 mol% YSZ 코팅의 내열특성 (Thermal Durability of 4YSZ Thermal Barrier Coating Deposited by Electron Beam PVD)

  • 박찬영;양영환;김성원;이성민;김형태;임대순;장병국;오윤석
    • 한국분말재료학회지
    • /
    • 제20권6호
    • /
    • pp.460-466
    • /
    • 2013
  • 4 mol% Yttria-stabilized zirconia (4YSZ) coatings with $200{\mu}m$ thick are fabricated by Electron Beam Physical Vapor Deposition (EB-PVD) for thermal barrier coating (TBC). $150{\mu}m$ of NiCrAlY based bond coat is prepared by conventional APS (Air Plasma Spray) method on the NiCrCoAl alloy substrate before deposition of top coating. 4 mol% YSZ top coating shows typical tetragonal phase and columnar structure due to vapor phase deposition process. The adhesion strength of coating is measured about 40 MPa. There is no delamination or cracking of coatings after thermal cyclic fatigue and shock test at $850^{\circ}C$.

서스펜션 플라즈마 용사법을 이용한 7.5 wt% Y2O3-ZrO2 열차폐코팅 제조 및 평가 (Fabrication and Characterization of 7.5 wt% Y2O3-ZrO2 Thermal Barrier Coatings Deposited by Suspension Plasma Spray)

  • 이원준;오윤석;이성민;김형태;임대순;김성원
    • 한국세라믹학회지
    • /
    • 제51권6호
    • /
    • pp.598-604
    • /
    • 2014
  • Considerable research efforts have been explored attempting to enhance the thermal durability of thermal barrier coatings (TBCs) at the high operating temperatures of gas turbines. In this study, the suspension plasma spray (SPS) process was applied to produce TBCs with a segmented structure by using an yttria-stabilized zirconia (YSZ) suspension. Four different experiment sets were carried out by controlling the ratio between surface roughness of the bond coat and feed stock size ($R_a/D_{50}$) in order to examine the effect of $R_a/D_{50}$ ratio on the microstructure of SPS-prepared coatings. When the $R_a/D_{50}$ had a high value of 11.8, a deposited thick coating turned out to have a cone-type columnar microstructure. In contrast, at the low $R_a/D_{50}$ values of 2.9 and 0.18, a deposited thick coating appeared to have a dense, vertically-cracked microstructure. However, with the very low $R_a/D_{50}$ value of 0.05 the coating was delaminated.

Thermal Durability of Thermal Barrier Coatings in Furnace Cyclic Thermal Fatigue Test: Effects of Purity and Monoclinic Phase in Feedstock Powder

  • Park, Hyun-Myung;Jun, Soo-Hyk;Lyu, Guanlin;Jung, Yeon-Gil;Yan, Byung-Il;Park, Kwang-Yong
    • 한국세라믹학회지
    • /
    • 제55권6호
    • /
    • pp.608-617
    • /
    • 2018
  • The effects of the purity and monoclinic phase of feedstock powder on the thermal durability of thermal barrier coatings (TBC) were investigated through cyclic thermal exposure. Bond and top coats were deposited by high velocity oxygen fuel method using Ni-Co based feedstock powder and air plasma spray method using three kinds of yttria-stabilized zirconia with different purity and monoclinic phase content, respectively. Furnace cyclic thermal fatigue test was performed to investigate the thermal fatigue behavior and thermal durability of TBCs. TBCs with high purity powder showed better sintering resistance and less thickness in the thermally grown oxide layer. The thermal durability was found to strongly depend on the content of monoclinic phase and the porosity in the top coat; the best thermal fatigue behavior and thermal durability were in the TBC prepared with high purity powder without monoclinic phase.

Effects of Healing Agent on Crack Propagation Behavior in Thermal Barrier Coatings

  • Jeon, Soo-Hyeok;Jung, Sung-Hoon;Jung, Yeon-Gil
    • 한국세라믹학회지
    • /
    • 제54권6호
    • /
    • pp.492-498
    • /
    • 2017
  • A thermal barrier coating (TBC) with self-healing property for cracks was proposed to improve reliability during gas turbine operation, including structural design. Effect of healing agent on crack propagation behavior in TBCs with and without buffer layer was investigated through furnace cyclic test (FCT). Molybdenum disilicide ($MoSi_2$) was used as the healing agent; it was encapsulated using a mixture of tetraethyl orthosilicate and sodium methoxide. Buffer layers with composition ratios of 90 : 10 and 80 : 20 wt%, using yttria stabilized zirconia and $MoSi_2$, respectively, were prepared by air plasma spray process. After generating artificial cracks in TBC samples by using Vickers indentation, FCTs were conducted at $1100^{\circ}C$ for a dwell time of 40 min., followed by natural air cooling for 20 min. at room temperature. The cracks were healed in the buffer layer with the healing agent of $MoSi_2$, and it was found that the thermal reliability of TBC can be enhanced by introducing the buffer layer with healing agent in the top coat.

전자 빔 물리적 증착(EB-PVD)법으로 코팅된 YSZ 열차폐층의 압흔손상 거동에 대한 하부층의 영향 (Influence of Subsurface Layer on the Indentation Damage Behavior of YSZ Thermal Barrier Coating Layers Deposited by Electron Beam Physical Vapor Deposition)

  • 허용석;박상현;한인섭;우상국;정연길;백운규;이기성
    • 한국세라믹학회지
    • /
    • 제45권9호
    • /
    • pp.549-555
    • /
    • 2008
  • The thermal barrier coating must withstand erosion when subjected to flowing gas and should also maintain good stability and mechanical properties while it must also protect the turbine component from high temperature, hot corrosion, creep, and oxidation during operation. In this study we investigated the influence of subsurface layer, $Al_2O_3$ or NiCrCoAIY bond coat layer, on the indentation damage behavior of YSZ thermal barrier coating layers deposited by electron beam physical vapor deposition (EB-PVD). The bond coat is deposited using different process such as air plasma spray (APS) or spray of high velocity oxygen fuel (HVOF) and the thickness is varied. Hertzian indentation technique is used to induce micro damages on the coated layer. The stress-strain behaviors are characterized by results of the indentation tests.

경사화 두께를 갖는 열차폐 코팅의 열적 내구성 평가 (Evaluation of Thermal Durability for Thermal Barrier Coatings with Gradient Coating Thickness)

  • 이승수;김준성;정연길
    • 한국산학기술학회논문지
    • /
    • 제21권8호
    • /
    • pp.248-255
    • /
    • 2020
  • 경사화 두께를 갖는 열차폐 코팅의 열적 내구성과 열적 안정성에 대한 코팅층 두께의 영향을 화염 열피로 시험과 열충격 시험을 통해서 조사하였다. Bond 층과 top 층은 각각 Ni-Cr계 상용 MCrAlY 분말과 상용 이트리아 안정화 지르코니아 (YSZ) 분말을 사용하여 니켈기지의 초내열합금 모재 (GTD-111)에 대기 플라즈마 용사법 (APS)으로 코팅층을 형성하였다. 1100 ℃의 화염으로 1429회 열피로 시험 후 bond 층이 일부 산화되고 top 층과 bond 층 계면에서 열화에 의한 산화층 (TGO)이 관찰되었으나, 코팅층 부위와 관계없이 균열이나 박리현상 없는 양호한 미세구조를 나타내었다. 1100 ℃ 열충격 시험결과, 37회 열충격 테스트 후 코팅층의 얇은 부위에서 박리가 시작되어 98회 시험 후 코팅층의 50% 이상이 박리되었으며, 코팅층의 두께가 얇게 형성된 부위는 코팅층이 두껍게 형성된 부위에 비해, top 층의 박리와 함께 bond 층의 산화가 많이 진행되었으며, 코팅층 두께가 상대적으로 두껍게 형성된 부위에서 열차폐 효과의 증가로 인해 bond 층의 내산화성과 열적 안정성이 우수한 것으로 나타났다.