• Title/Summary/Keyword: yttria-stabilized zirconia (YSZ)

Search Result 152, Processing Time 0.032 seconds

Sample Preparation for Microstructural Characterization of Ni-Yttria-Stabilized Zirconia Anodes

  • Sim, Soo-Man
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.4
    • /
    • pp.376-380
    • /
    • 2018
  • Microstructural characterization of Ni-yttria-stabilized zirconia (YSZ) anodes using secondary electron images has been limited by a lack of contrast between Ni and YSZ phases. This paper reports a sample preparation method for obtaining secondary electron images that allow the detection of Ni, YSZ, and pore phases together. Ni-YSZ anode samples were obtained by reducing NiO-YSZ samples prepared by using the mixed oxide method. Colloidal silica polishing and electrolytic etching were performed on the Ni-YSZ samples. The morphological change of the sample surface after each polishing process is examined.

Phase stability and Sintered Properties of 1.5mol% Yttria-stabilized Zirconia Ceramics Fabricated by Low Temperature Sintering (저온 열처리로 제작된 1.5 mol% 이트리아 안정화 지르코니아 세라믹스의 상 안정성 및 소결물성)

  • Kyung Tae Kim;Han Cheol Choe;Jeong Sik Park;Jong Kook Lee
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.37 no.1
    • /
    • pp.1-8
    • /
    • 2024
  • Phase stability of tetragonal crystals in yttria-stabilized zirconia ceramics is dependent on the content of yttria and the heat-treatment condition, related with mechanical properties. In this study, we fabricated the 1.5 mol% yttria-stabilized zirconia (1.5Y-YSZ) ceramics by cold isostatic pressing (CIP) and post-sintering at temperature range of 1200 to 1350℃ for 2 hours and investigated the sintered properties and microstructural evolution. Sintered and microstructural parameters, i.e, apparent density, grain size and phase composition of 1.5Y-YSZ ceramics were mainly dependent on the sintering temperature. Maximum sintered density of 99.4 % and average grain size of 200-300 nm could be obtained from the heat-treatment condition above sintering temperature at 1300℃ for 2 hours, possessing the superior mechanical hardness with 1200 Hv. However, phase stability of tetragonal grains in 1.5 YSZ ceramics is very low, inducing the phase transformation to monoclinic crystals on specimen surface during cooling after heat-treatment.

Crack-Free Fabrications of Yttria-Stabilized Zirconia Films Using Successive-Ionic-Layer-Adsorption-and-Reaction and Air-Spray Plus Method

  • Taeyoon Kim;Sangmoon Park
    • Korean Journal of Materials Research
    • /
    • v.34 no.2
    • /
    • pp.79-84
    • /
    • 2024
  • Thin films of yttria-stabilized zirconia (YSZ) nanoparticles were prepared using a low-temperature deposition and crystallization process involving successive ionic layer adsorption and reaction (SILAR) or SILAR-Air spray Plus (SILAR-A+) methods, coupled with hydrothermal (175 ℃) and furnace (500 ℃) post-annealing. The annealed YSZ films resulted in crystalline products, and their phases of monoclinic, tetragonal, and cubic were categorized through X-ray diffraction analysis. The morphologies of the as-prepared films, fabricated by SILAR and SILAR-A+ processes, including hydrothermal dehydration and annealing, were characterized by the degree of surface cracking using scanning electron microscopy images. Additionally, the thicknesses of the YSZ thin films were compared by removing diffusion layers such as spectator anions and water accumulated during the air spray plus process. Crack-free YSZ thin films were successfully fabricated on glass substrates using the SILAR-A+ method, followed by hydrothermal and furnace annealing, making them suitable for application in solid oxide fuel cells.

A Study on the High Temperature Steam Electrolysis Using (La0.8Sr0.2)0.95MnO3/Yttria Stabilized Zirconia Composite Electrodes ((La0.8Sr0.2)0.95MnO3/Yttria Stabilized Zirconia 복합체 전극을 이용한 고온 수증기 전기분해 연구)

  • Ji, Jong-Sup;Kim, Chang-Hee;Kang, Yong;Sim, Kyu-Sung
    • Korean Chemical Engineering Research
    • /
    • v.43 no.5
    • /
    • pp.627-631
    • /
    • 2005
  • The $(La_{0.8}Sr_{0.2})_{0.95}MnO_3$/yttria-stabilized zirconia (LSM/YSZ) composites were investigated as anode materials for high temperature steam electrolysis using X-ray diffractometry, scanning electron microscopy, galvanodynamic and galvanostatic polarization method. For this purpose, the LSMperovskites were fabricated in powders by co-precipitation method and then were mixed with 8 mol% YSZ powders in different molar ratios. The LSM/YSZ composites were deposited on 8 mol% YSZ electrolyte disks by means of a screen printing method, followed by sintering at temperatures above $1,100^{\circ}C$. From the experimental results, it is concluded that the electrochemical properties of LSM and the LSM/YSZ composites are closely related to their microstructure and operating temperatures.

Oxygen detection of sensor cells based on YSZ (Yttria-Stabilized Zirconia) thin films (YSZ(yttria-stabilized zirconia) 박막을 이용한 센서 셀의 산소 감응)

  • 박준용;배정운;황순원;김기동;조영아;전진석;최동수;염근영
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.4B
    • /
    • pp.507-513
    • /
    • 1999
  • 8mol%-yttria-stabilized zirconia(YSZ) thin films as oxygen ion conductor were deposited by rf-magnetron sputtering, and the oxygen gas sensors with the structure of $SiO_2$ substrate/Ni-NiO mixed reference layer/Pt/YSZ/Pt were fabricated and their oxygen sensing properties were investigated. The steady-state electro-motive force (EMF) values were measured as a function of oxygen partial pressure ($PO_2;form 1.013\times10^3 \textrm{Pa \;to}\; 1.013\times10^5$Pa) and operating temperature ($300^{\circ}C$ to $700^{\circ}C$). The fabricated YSZ oxygen sensor showed the best oxygen sensing properties at 50$0^{\circ}C$. However, oxygen sensing properties were very low at the temperature lower than 30$0^{\circ}C$ due to the lack of oxygen ion mobility and at the temperature higher than $700^{\circ}C$ due 새 intermixing of materials between the layers. Especially, the YSZ sensor operating at $500^{\circ}C$ and oxygen partial pressure above $1.565\times10^4$Pa showed the oxygen sensing properties close to the values predicted by ideal Nernst equation.

  • PDF

Limit-current type zirconia oxygen sensor with porous diffusion layer (다공성 확산층을 이용한 한계전류형 지르코니아 산소센서)

  • Oh, Young-Jei;Lee, Chil-Hyoung
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.329-337
    • /
    • 2008
  • Simple, small and portable oxygen sensors were fabricated by tape casting technique. Yttria stabilized zirconia containing cordierite ceramics (YSZC) were used as a porous diffused layer of oxygen in pumping cell. Yttria stabilized zirconia (YSZ) solid electrolyte, YSZC porous diffusion layer and heater-patterned ceramic sheets were prepared by co- firing method. Limit current characteristics and the linear relationship of current to oxygen concentration were observed. Viscosity variation of the slurries both YSZ and YSZC showed a similar behavior, but micro pores in the fired sheet were increased with increasing of the cordierite amount. Molecular diffusion was dominated due to the formation of large pores in porous diffusion layer. The plateau range of limit current in porous-type oxygen sensor was narrow than the one of aperture-type oxygen sensor. However limit current curve was appeared in porous-type oxygen sensor even at the lower applied voltage. The plateau range of limit-current was widen as increasing the thickness of porous diffusion layer of the YSZ containing cordierite. Measuring temperature of $600{\sim}650^{\circ}C$ was recommended for limit-current oxygen sensor. Porous diffusion layer-type oxygen sensor showed faster response than the aperture-type one and was stable up to 30 days running without any crack at interface between the layers.

Effect of the multilayer structure on electrical and mechanical properties fo thin film yttria stabilized zirconia electrolyte

  • Jung, In-Ho;Lee, You-Kee;Park, Jong-Wan
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.2 no.1
    • /
    • pp.43-48
    • /
    • 1998
  • The effect of mcirostructure on the electrical properties of yttria stabilized zirconia (YSZ) was analyzed by modeling layer arrangements and mixed phase structure. The YSZ thin films were deposited by RF magnetron sputtering using 30mol% YSZ and 8 mol% YSZ targets with yttrium pellets on porous alumina substrates. The structure, composition and electricla properties of the YSZ films were investigated as functions of sputtering conditons and layer arrangements by XRD, TEM, XPS and acimpedance spectroscopy. The results showed that the triple palyered YSZ films had highermicrohardness, lower compressive stress state and higher ionic conductivity by one order than single and double layered YSZ films. However, sputtered YSZ films have low conductivity compared to YSZ pellets or doctor bladed YSZ thin plates. These results were probably due to the influence of insulating alumina substrates, impractical for most stacking geometries and inductance induced by relatively long platinum, lead wire on YSZ conductivity.

Crystallization of Yttria-Stabilized-Zirconia Film by Sol-Gel Process (졸-겔법에 의한 이트리안 안정화 지프코니아박막의 결정화)

  • 서원찬;조차제;윤영섭;황운석
    • Journal of the Korean institute of surface engineering
    • /
    • v.30 no.3
    • /
    • pp.183-190
    • /
    • 1997
  • Fabrication and crystallization characteristics of yttria($T_2O_3$) stabilized zirconia(YSZ) thin film by sol-gel process were studied. YSZ sol was synthesized with zirconium n-propoxide($Zr(OC_3H_7)_4)$) and yttrium nitrate pentahydrate ($Y(NO_3)_3.5H_2O$). YSZ film was prepared by depositing the polymeric sol on porous $Al_2O_3$ substrate by spin-coating, and the film characteristics were investigated by FRIR, TG-DTA, XRD, DSC, optical microscopy and SEM. The film topology was uniform and cracks were not found. It was found that the annealing temperature and the concentration of stabilizer affect the crystallization of YSZ film. The YSZ film began to crystallize from amorphous to tetragonal phase at 40$0^{\circ}C$, and it was not converted to cubic structure until $1100^{\circ}C$. It seemed that the grains were formed over $700^{\circ}C$and the average grain size was obtained about 0.2$\mu\textrm{m}$.

  • PDF