DOI QR코드

DOI QR Code

Phase stability and Sintered Properties of 1.5mol% Yttria-stabilized Zirconia Ceramics Fabricated by Low Temperature Sintering

저온 열처리로 제작된 1.5 mol% 이트리아 안정화 지르코니아 세라믹스의 상 안정성 및 소결물성

  • Received : 2023.12.06
  • Accepted : 2024.01.22
  • Published : 2024.01.30

Abstract

Phase stability of tetragonal crystals in yttria-stabilized zirconia ceramics is dependent on the content of yttria and the heat-treatment condition, related with mechanical properties. In this study, we fabricated the 1.5 mol% yttria-stabilized zirconia (1.5Y-YSZ) ceramics by cold isostatic pressing (CIP) and post-sintering at temperature range of 1200 to 1350℃ for 2 hours and investigated the sintered properties and microstructural evolution. Sintered and microstructural parameters, i.e, apparent density, grain size and phase composition of 1.5Y-YSZ ceramics were mainly dependent on the sintering temperature. Maximum sintered density of 99.4 % and average grain size of 200-300 nm could be obtained from the heat-treatment condition above sintering temperature at 1300℃ for 2 hours, possessing the superior mechanical hardness with 1200 Hv. However, phase stability of tetragonal grains in 1.5 YSZ ceramics is very low, inducing the phase transformation to monoclinic crystals on specimen surface during cooling after heat-treatment.

Keywords

Acknowledgement

본 연구는 2022년도 중소벤처기업부의 기술개발사업 지원에 의한 연구임(과제번호 S3312766).

References

  1. G. K. Bansal and A. H. Heuer: Acta Metal. 20 (1972) 1281.
  2. R. C. Garvie, R. H. Hannink, and R. T. Pascoe: Nature 258 (1975) 703.
  3. L. L. Lange: J. Mater. Sci. 17 (1982) 225.
  4. P. Li, U. Wei Chen and J. E. Penner-Hahn: J. Am. Ceram. Soc. 77 (1994) 118.
  5. T. Charaska, A. H. King and C. C. Berndt: Mater. Sci. Eng. A286 (2000) 169.
  6. L. Zhang, H. Yin, R. Zhang, X. Jiang, C. Zhang, Y. Wang, S. Yan and X. Qu: J. Mater.s Res. 38 (2023) 3383.
  7. J. K. Lee and H. Kim: J. Mater. Sci., 29 (1994) 136.
  8. R. H. J. Hannink, P. M. Kelly and B. C. Muddle: J. Am. Ceram. Soc. 83 (2000) 461.
  9. T. K. Gupta, J. H. Bechtold, R.C. Kuznicki, L. H. Cadoff, and B. R. Rossing: J. Mater. Sci., 12 (1977) 2421.
  10. Q. L. Li, Y. Y. Jiang, Y. R. Wei, M. V. Swain, M. F. Yao, D. S. Li, T. Wei, Y. T. Jian, K. Zhao, and X. D. Wang, X.-D. Ceram. Int., 48 (2022) 48.
  11. V. Kulyk, Z. Duriagina, A. Kostryzhev, B. Vasyliv, V. Vavrukh, and O. Marenych: Materials. 15 (2022) 5212.
  12. K. Matsui, H. Yoshida, and Y. Ikuhara: J. Am. Ceram. Soc. 92 (2009) 467.
  13. J. K. Lee and H. Kim: Ceram. Inter., 20 (1994) 413.
  14. I. G. Tredici, M. Sebastiani, F. Massimi, E. Bemporad, A. Resmini, G. Merlati, and U. Anselmi-Tamburini: Ceram. Int. 42 (2016) 8190.
  15. E. Camposilvan, R. Leone, L. Gremillard, R. Sorrentino, F. Zarone, M. Ferrari, and J. Chevalier: Dent. Mater., 34 (2018) 879.
  16. J. Chevalier, L. Gremillard, A. V. Virkar, and D. R. Clarke: J. Am. Ceram. Soc., 92 (2009) 1901.
  17. Z. K. Wu, N. Li, C. Jian, W. Q. Zhao, and J. Z. Yan: Ceram. Int., 39 (2013) 7199.
  18. I. Denry, and J. R. Kelly: Dent. Mater., 24 (2008) 299-307.
  19. R. B. Osman, and M. V. Swain: Materials (Basel)., 8 (2015) 932.
  20. K. Matsui, K. Hosoi, B. Feng, H. Yoshida, and Y. Ikuhara: PNAS, 120 (2023) e2304498120.
  21. Tosoh, "Technical Data Sheet Zgaia1.5Y-HT", Tech. Bull (2023).
  22. W. F. M. Groot Zevert, A. J. A. Winnubst, G. S. A. M. Theunissen, and A. J. Burggraaf: J. Mater. Sci., 25 (1990) 3449.
  23. J. K. Lee and H. Kim: J. Mater. Sci. Lett., 12 (1993) 976.
  24. I. Sanchez, D. Axinte, Z. Liao, O. Gavalda-Diaz and R. Smith: Mater. Design 229 (2023) 111908.
  25. M. Guazzato, L. Quach, M. Albakry, and M.V. Swain: J. Dent. 33 (2005) 9.
  26. V. Kulyk, Z, Duriagina, B. Vasyliv, V. Vavrukh, T. Kovbasiuk, P. Lyutyy, and V. Vira: Materials 15 (2022) 2707.
  27. I. G. Tredici, M. Sebastiani, F. Massimi, E. Bemporad, A. Resmini, G. Merlati, and U. Anselmi-Tamburini: Ceram. Int. 42 (2016) 8190.
  28. S. M. Fathy, W. Al-Zordk, M. E. Grawish, and M. V. Swain: Dent. Mater. 37 (2021) 711.