• Title/Summary/Keyword: yield strength of shear reinforcement

Search Result 66, Processing Time 0.026 seconds

Evaluation on the Maximum Yield Strength of Steel Stirrups in Reinforced Concrete Beams (철근콘크리트 보에 사용된 전단보강철근의 항복강도 제한에 대한 평가)

  • Lee, Jin-Eun;Lee, Jung-Yoon
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.6
    • /
    • pp.685-693
    • /
    • 2012
  • The yield strength of shear reinforcement is restricted in the present design codes. In this study, the possibility of the yield strength increase in shear reinforcement is evaluated according to ACI318-08, EC2-02 and CSA-04 by comparing the experimental and calculated results. Three cases were used to analyze the shear strength of the beam. One had no limitation in the yield strength of shear reinforcement, another had restriction on the yield strength of shear reinforcement, and the other had a restriction on the yield strength of shear reinforcement and the shear reinforcement ratio. The study results showed that the case with unlimited shear reinforcement yield strength predicted the test result better than other two cases. Even though the rebar yield strength higher than the strength required in present code was applied to existing shear design equation, the result was reasonable. Therefore, the design equation seemed to be appropriate even if the high-strength shear reinforcement is used in practice based on the existing shear design method.

Evaluation of the Maximum Yield Strength of Steel Stirrups and Shear Behavior of RC Beams (철근콘크리트 보의 전단보강철근의 최대 항복강도 및 전단거동 평가)

  • Lee, Jung-Yoon;Choi, Im-Jun;Kang, Ji-Eun
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.5
    • /
    • pp.711-718
    • /
    • 2010
  • The requirement of the maximum yield strength of shear reinforcement in the KCI-07 code is quite different to those in the ACI-08 code, EC2-02, CSA-04, and JSCE-04 codes. Eighteen RC beams having high strength shear reinforcement were tested. Test results indicated that even if the yield strength of shear reinforcement in beams was much greater than the maximum yield strength required by the KCI-07 design code, the shear reinforcement of these beams reached their yield strains. Furthermore, the shear strengths of tested beams increased almost linearly with the increase of the amount of shear reinforcement. In addition, larger numbers of diagonal cracks developed in the web of the beam having greater yield strength than the beams having lower yield strength of shear reinforcement. The maximum crack width of the beam having high strength shear reinforcement was approximately the same to the crack with of the beam having normal strength shear reinforcement.

Shear Behavior of Post-tensioning PSC Beams with High Strength Shear Reinforcement (고강도 전단보강철근을 사용한 포스트텐션 프리스트레스트 콘크리트 보의 전단거동 평가)

  • Jun, Byung-Koo;Lee, Jea-Man;Lim, Hye-Sun;Lee, Jung-Yoon
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.1
    • /
    • pp.33-40
    • /
    • 2016
  • The KCI-12 and ACI 318-14 design codes limit the maximum yield strength of shear reinforcement to prevent concrete compressive crushing before the yielding of shear reinforcement. The maximum yield strength of shear reinforcement is limited to 420 MPa in the ACI 318-14 design code, while limited to 500 MPa in the KCI-12 design code. A total of eight post-tensioning prestressed concrete beams with high strength shear reinforcement were tested to observe the shear behavior of PSC beams and the applicability of the high strength reinforcement was thus assessed. In the all PSC beam specimens that used stirrups greater than maximum yield strength of shear reinforcement required by the ACI 318-14 design code, the shear reinforcement reached their yield strains. The observed shear strength of tested eight PSC beams was greater than the calculated ones by the KCI-12 design codes. In addition, the diagonal crack width of all specimens at the service load was smaller than the crack width required by the ACI 224 committee. The experimental and analytical results indicate that the limitation on the yield strength of shear reinforcement in the ACI 318-14 design code is somewhat under-estimated and needs to be increased for high strength concrete. Also the application of high strength materials to PSC is available with respect to strength and serviceability.

Shear Behavior of High-Strength Steel Reinforced Concrete Beams without Stirrups (고장력 주인장 철근을 사용한 전단보강이 없는 보의 전단성능에 관한 연구)

  • Shon, Young-Moo;Yoon, Young-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.2
    • /
    • pp.203-210
    • /
    • 2002
  • In these days, High-strength steel prevails throughout the construction fields for the benefit of structural and economical aspects. But high-strength steel is used by the simple calculation of flexural capacities for the purpose of reducing flexural reinforcement. So, this paper is mainly focused on the shear behavior of high-strength steel reinforced concrete beams without stirrups comparing with normal-strength steel reinforced concrete beams. Specimens were made and tested with the experimental parameters, such as steel yield strength, reinforcement ratios and minimum shear reinforcement. The main result was that not only area but also the yield strength of flexural reinforcement should be considered to predict the shear capacities of concrete beams. In addition, the experimental results were simulated by modified compression field theory analysis program, RESPONSE 2000. A good agreement was achieved between the test results and program analyses.

Experimental Study on Improvement of Bond Performance of RC Beams with High-Strength Shear Reinforcement (고강도 전단철근을 사용한 철근콘크리트 보의 부착성능 향상에 관한 실험적 연구)

  • Kim, Sang-Woo;Kim, Do-Jin;Yoon, Hye-Sun;Baek, Sung-Cheol;Kim, Kil-Hee
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.4
    • /
    • pp.527-534
    • /
    • 2010
  • This study presents a simple method to improve the bond performance of reinforced concrete (RC) beams having high-strength shear reinforcement. In general, the yield strength and the ratio of shear reinforcements are the main parameters governing the shear capacity of RC beams. The yield strength of shear reinforcement, however, has little influence on the bond capacity of RC beams. Therefore, a sudden bond failure of the members with high-strength shear reinforcement can occur before flexural failure. To estimate the structural performance of the proposed method, four RC beams were cast and tested. The main test parameters were the yield strength, ratio, and reinforcing types of shear reinforcements. The experimental results indicated that the proposed method was able to effectively improve the bond performance of RC beams with high-strength shear reinforcement.

Assessment of Shear Behavior of High-Strength Steel RC Beams (고장력 주인장 철근을 사용한 RC보의 전단거동에 미치는 영향평가)

  • 손영무;윤영수;이만섭;김영훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.603-608
    • /
    • 2001
  • In these days, high-strength steel prevails throughout the construction fields for the benefit of structural and economical aspects. But high-strength steel is used by the simple calculation of flexural capacities for the purpose of reducing flexural reinforcement. So, this paper is mainly focused on the shear behavior of high-strength steel reinforced concrete beams without stirrups comparing with normal-strength steel reinforced concrete beams. Specimens were made and tested with the experimental parameters, such as steel yield strength, reinforcement ratios and minimum shear reinforcement. The main result was that not only area but also the yield strength of flexural reinforcement should be considered to predict the shear capacities of concrete beams.

  • PDF

Structural Behavior of Reinforced Concrete Beams using High Strength Shear Reinforcement (고강도 전단보강 철근을 사용한 철근콘크리트 보의 거동평가)

  • Choi, Im-Jun;Park, Jong-Wook;Hwang, Hyun-Bok;Lee, Jung-Yoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.3-4
    • /
    • 2009
  • This study predicts the structural behavior of RC beams using high strength shear reinforcement and evaluates current design codes restricting the strength of shear reinforcement steel. Under the present design codes, the yield strength of shear reinforcement steel is restricted to 400MPa. In case that use high yield strength reinforcement steel, could incure heavily crack and deflection at the members of structure, and have not verified ductility capacity, fatigue resisting capacity, shear and torsion resisting capacity, anchoring capacity and seismic capacity. To this end, we evaluate structural behavior of reinforced concrete beams using high strength shear reinforcement.

  • PDF

Effect of shape and amount of transverse reinforcement on lateral confinement of normal-strength concrete columns

  • Kim, Hyeong-Gook;Kim, Kil-Hee
    • Advances in concrete construction
    • /
    • v.14 no.2
    • /
    • pp.79-92
    • /
    • 2022
  • The amount and configuration of transverse reinforcement are known as critical parameters that significantly affect the lateral confinement of concrete, the ductility capacity, and the plastic hinge length of RC columns. Based on test results, this study investigated the effect of the three variables on structural indexes such as neutral axis depth, lateral expansion of concrete, and ductility capacity. Five reinforced concrete column specimens were tested under cyclic flexure and shear while simultaneously subjected to a constant axial load. The columns were reinforced by two types of reinforcing steel: rectangular hoops and spiral type reinforcing bars. The variables in the test program were the shape, diameter, and yield strength of transverse reinforcement. The interactive influence of the amount of transverse reinforcement on the structural indexes was evaluated. Test results showed that when amounts of transverse reinforcement were similar, and yield strength of transverse reinforcement was 600 MPa or less, the neutral axis depth of a column with spiral type reinforcing bars was reduced by 28% compared with that of a column reinforced by existing rectangular hoops at peak strength. While the diagonal elements of spiral-type reinforcing bars significantly contributed to the lateral confinement of concrete, the strain of diagonal elements decreased with increases of their yield strength. It was confirmed that shapes of transverse reinforcement significantly affected the lateral confinement of concrete adjacent to plastic hinges. Transverse reinforcement with a yield strength exceeding 600 MPa, however, increased the neutral axis depth of normal-strength concrete columns at peak strength, resulting in reductions in ductility and energy dissipation capacity.

FEM Analysis of RC Deep Beam Depending on Shear-Span Ratio

  • Lee, Yongtaeg;Kim, Seongeun;Kim, Seunghun
    • Architectural research
    • /
    • v.19 no.4
    • /
    • pp.117-124
    • /
    • 2017
  • In this research, we carried out finite element analysis depends on the variations such as the strength of the main bar, concrete, shear-span ratio(a/d) and existence of shear reinforcing bar. Throughout the results of FEM analysis, we were able to figure out how each variation can effect on shear performance. As the strength of concrete increased, the maximum shear force enhancement effect of each specimen was evaluated. As a result, the shear strengthening effect was 51~97% for shear reinforced specimens, and 26~44% for non-shear reinforced specimens. As the yield strength of reinforcing bars increases, the shear reinforcement effect of the specimen the specimens without shear reinforcement were 3%~6% higher than those with shear reinforcement. Theoretical and analytical values were compared using the design equations obtained from the CEB code. Theoretical and analytical values were compared using the design equations obtained from the CEB code. As a result, the error rate was the highest at 3.64 in the S1.0-C0 series and the lowest at 1.46 in the S1.7-C1 series. Therefore, the design equation of the CEB code is estimated to underestimate the actual shear strength of deep beams that are not subjected to shear reinforcement.

Maximum Shear Reinforcement of RC Beams using High Strength Concrete (고강도 콘크리트를 사용한 RC보의 최대철근비)

  • Lee, Jung-Yoon;Hwang, Hyun-Bok
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.839-842
    • /
    • 2008
  • The ACI 318-05 code requires the maximum amount of shear reinforcement in reinforced concrete (RC) beams to prevent possible sudden shear failure due to over reinforcement. The design equations of the maximum amount of shear reinforcement provided by the current four design codes, ACI 318-05, CSA-04, EC2-02, and JCI-99, differ substantially from one another. The ACI 318-05, CSA-04, and EC2-02 codes provide an expression for the maximum amount of shear reinforcement ratio as a function of the concrete compressive strength, but Japanese code does not take into account the influence of the concrete compressive strength. For high strength concrete, the maximum amount of shear reinforcement calculated by the EC2-02 and CSA-04 is much greater than that calculated by the ACI 318-05. This paper presents the effects of shear reinforcement ratio and compressive strength of concrete on the maximum shear reinforcement in reinforced concrete beams. Ten RC beams having various shear reinforcement ratio were tested. Although the test beams were designed to have much more amount of shear reinforcement than that required in the ACI 318-05 code, all beams failed due to web concrete crushing after the stirrups reached the yield strain.

  • PDF