• Title/Summary/Keyword: yeast-based assay

Search Result 56, Processing Time 0.02 seconds

In vitro Screening of Medicinal Plants with Estrogen Receptor Modulation Activity (생약의 여성호르몬 수용체 조절 활성 검색)

  • Lee, Chang-Min;Kang, Se-Chan;Oh, Joa-Sub;Choi, Han;Li, Xue-Mei;Lee, Jae-Hyun;Lee, Mi-Hyun;Choung, Eui-Su;Kawk, Joung-Hwan;Zee, Ok-Pyo
    • Korean Journal of Pharmacognosy
    • /
    • v.37 no.1 s.144
    • /
    • pp.21-27
    • /
    • 2006
  • Yeast based estrogenicity assay is the simplest and useful for the assay and the discovery of novel estrogenic substances in natural specimens, The estrogen receptor(ER) modulation activity of 50% EtOH extracts of 101 traditional medicinal herbs was assessed using a recombinant yeast assay system with both a human estrogen receptor expression plasmid and a receptor plasmid. Among them, 14 species proved to be active. Pureariae Flos (flower of Puerraria thunbergiana BENTH.) had the highest estrogenic relative potency$(7.75{\times}10^{-3})$ $(EC_{50}=9.39\;{\mu}g/ml)$. The $EC_{50}$ value of $17{\beta}-estradiol$ used as the positive control was $0.073\;{\mu}g/ml)$ (Relative Potency=1.00). There results demonstrated that some of the traditional medical herb may be useful in the therapy of estrogen replacement.

Expression of Anthrax Lethal Factor, a Major Virulence Factor of Anthrax, in Saccharomyces cerevisiae (Yeast내에서 탄저병 원인균인 Bacillus anthracis의 치사독소인 Lethal Factor 단백질 발현)

  • Hwang Hyehyun;Kim Joungmok;Choi Kyoung-Jae;Chung Hoeil;Han Sung-Hwan;Koo Bon-Sung;Yoon Moon-Young
    • Korean Journal of Microbiology
    • /
    • v.41 no.4
    • /
    • pp.275-280
    • /
    • 2005
  • Anthrax is an infectious disease caused by the gram-positive bacterium, Bacillus anthracis. Anthrax toxin is a tripartite toxin comprising of protective antigen (PA), lethal factor (LF) and edema factor (EF). PA is the receptor-binding component, which facilitates the entry of LF or EF onto the cytosol. LF is a zinc-dependent metalloprotease, which is a critical virulence factor in cytotoxicity of infected animals. Therefore, it is of interest to develop its potent inhibitors for the neutralization of anthrax toxin. The first step to identify the inhibitors is the development of a rapid, sensitive, and simple assay method with a high-throughput ability. Much efforts have been concentrated on the preparation of powerful assays and on the screening of inhibitors using these system. In the present study, we have tried to construct anthrax lethal factor in yeast expression system to prepare cell-based high-throughput assay system. Here, we have shown the results covering the construction of a new vector system, subcloning of LF gene, and the expression of target gene. Our results are first trial to express LF gene in eukaryote and provide the basic steps in design of cell-based assay system.

Yeast extract inhibits the proliferation of renal cell carcinoma cells via regulation of iron metabolism

  • DAEUN MOON;JINU KIM;SANG‑PIL YOON
    • Molecular Medicine Reports
    • /
    • v.20 no.4
    • /
    • pp.3933-3941
    • /
    • 2019
  • The microbiome has recently attracted research interest in a variety of subjects, including cancer. In the present study, it was determined that reinforced clostridium media (RC M) for microbiome culture, exerts antitumor effects on renal cell carcinoma cells when compared to the microbiome 'X'. The antitumor effects of RC M were investigated for all ingredients of RC M, and the results revealed that yeast extract could be a candidate for the ingredient driving this phenomenon. Further experiments including MTT assay, cell counting, cell death analysis, cell cycle analysis and western blotting were conducted with yeast extract on renal cell carcinoma cells (Caki-1 and Caki-2) and normal human proximal tubular cells (HK-2). As a result, yeast extract exhibited dose-dependent antitumor effects on Caki-1 and Caki-2, but only slight effects on HK-2. In addition, yeast extract only exhibited slight effects on necrosis, autophagy, or apoptosis of Caki-1 and Caki-2. Yeast extract produced cell cycle arrest with an increased G0/G1 fraction and a decreased S fraction, and this was considered to be related to the decreased cyclin D1. Although yeast extract treatment increased anti-oxidant activities, the antitumor effects of yeast extract were also related to iron metabolism, based on the decreased transferrin receptor and increased ferritin. In addition, decreased GPX4 may be related to iron-dependent cell death, particularly in Caki-2. These results revealed that yeast extract may inhibit proliferation of renal cell carcinoma cells by regulating iron metabolism. Since an increased iron requirement is a classic phenomenon of cancer cells, yeast extract may be a candidate for adjuvant treatment of renal cell carcinoma.

Direct Interaction of KIF5s and Actin-Based Transport Motor, Myo9s (KIF5s와 직접 결합하는 액틴 결합 운동단백질 Myo9s의 규명)

  • Seog, Dae-Hyun
    • Journal of Life Science
    • /
    • v.21 no.8
    • /
    • pp.1076-1082
    • /
    • 2011
  • Microtubule-based kinesin motor proteins are used for long-range vesicular transport. KIF5s (KIF5A, KIF5B and KIF5C) mediate the transport of various membranous vesicles along microtubules, but the mechanism behind how they recognize and bind to a specific cargo has not yet been completely elucidated. To identify the interaction protein for KIF5B, yeast two-hybrid screening was performed and a specific interaction with the unconventional myosin Myo9b, an actin-based vesicle transport motor, was found. The GTPase-activating protein (GAP) domain of Myo9s was essential for interaction with KIF5B in the yeast two-hybrid assay. Myo9b bound to the carboxyl-terminal region of KIF5B and to other KIF5 members. In addition, glutathione S-transferase (GST) pull-downs showed that Myo9s specifically interact to the complete Kinesin-I complex. An antibody to KIF5B specifically co-immunoprecipitated KIF5B associated with Myo9s from mouse brain extracts. These results suggest that kinesin-I motor protein interacts directly with actin-based motor proteins in the cell.

Chemical Synthesis of a Human Lysozyme Gene and Expression in Saccharomyces cerervisiae (Human Lysozyme 유전자의 화학적 합성과 Saccharomyces cerevisiae 에서의 발현)

  • 김기운;이승철;황용일
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.2
    • /
    • pp.138-144
    • /
    • 1995
  • The cDNA, encoding human lysozyme (HLY) which was isolated from a human placenta cDNA library, has been well characterized (Yoshimura et al., 1988). Based on the communication, we have prepared an artificial HLY gene from chemically synthesized 38-oligomer with high codon usage in Saccharomyces cerevisiae. For directing the synthesis and secretion of HLY in S. cerevisiae, an expression vector, pHKl was constructed by inserting the HLY gene, containing a synthetic HLY secretion signal sequence, between the yeast GAP promoter and PH05 terminator. From a lysoplate assay, we have confirmed an yeast transformant harboring a pHK1 which makes a clearing zone on the overlayed Micrococcus luteus. This result means a chemically synthesized HLY gene which was normally expressed and secreted in yeast.

  • PDF

Structure and Foaming Properties of Viscous Exopolysaccharides from a Wild Grape-Associated Basidiomycetous Yeast Papiliotrema flavescens Formerly Known as Cryptococcus flavescens

  • Oluwa, Salomon Woye
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.11
    • /
    • pp.1739-1749
    • /
    • 2020
  • Exopolysaccharide produced by the yeast Papiliotrema flavescens, isolated from wine grape berries of Champagne vineyard, was investigated for both chemical and functional characterization. SECMALLS and colorimetric assay analyses showed that the EPS is a high MW heteropolymer (2.37 × 106 g/mol) majorily consisting of mannose, glucose, xylose and glucuronic acid as monosaccharide constituents, with two substituents (sulphate and phosphate groups), and a minor protein moiety. Structural enchainment of these carbohydrates based on methylation, GC-MS and NMR analyses revealed a linear main backbone built up of α-(1 → 3)-D-mannopyranosyl residues on which are branched side chains consisting of a single β-D-glucopyranosyluronic acid residue and β-(1 → 2)-xylopyranoses (2-5 residues). Suggestion of some xylopyranose side chains containing a mannose residue at the nonreducing terminal end was also proposed. This is first report on EPSs from the grape P. flavescens yeast with such structural characteristics. Furthermore, investigations for valuating the application performance of these EPS in relation with their structural features were carried out in 8% alcohol experiment solutions. Very exceptional viscosifying and foaming properties were reported by comparison with commercial biopolymers such as Arabic, gellan and xanthan gums. The intrinsic properties of the natural biopolymer from this wild grape-associated P. flavescens yeast make it a potential candidate for use in various biotechnology applications.

SCG10, a Microtubule-Destabilizing Factor, Interacts Directly with Kinesin Superfamily KIF1A Protein in Brain (Kinesin superfamily KIF1A와 결합하는 미세소관 불안정화 단백질 SCG10의 규명)

  • Moon, Il-Soo;Seog, Dae-Hyun
    • Journal of Life Science
    • /
    • v.19 no.7
    • /
    • pp.859-865
    • /
    • 2009
  • Microtubules, a major cytoskeleton, form parallel arrays in the axon and are oriented with their plus ends toward the cell periphery. Kinesin superfamily proteins (KIFs) are the molecular motors acting in the microtubule-based motilities of organelles in cells. Here, we used the yeast two-hybrid system to identify the protein that interacts with the coiled-coil domain of KIF1A and found a specific interaction with microtubule-destabilizing factor SCG10. SCG10 bound to the amino acid residues between 400 and 820 of KIF1A, but not to other KIFs in the yeast two-hybrid assay. The coiled-coil domain of SCG10 is essential for interaction with KIF1A. In addition, this specific interaction was also observed in the Glutathione S-transferase pull-down assay. An antibody to SCG10 specifically co-immunoprecipitated KIF1A associated with SCG10 from mouse brain extracts. These results suggest that KIF1A motor protein transports SCG10-containing vesicles along microtubules in neurons.

Increased Expression of a Chemically Synthesized Human Lysozyme Gene in Saccharomyces cerevisiae (Saccharomyces cerevisiae에서 합성된 Human Lysozyme 유전자의 발현증대)

  • 김기운;최선욱;이승철;백현동;황용일
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.1
    • /
    • pp.34-39
    • /
    • 1998
  • We have already prepared a human lysozyme (HLY) structural gene from chemically synthesized 38 oligomers with high codon usage in Saccharomyces cerevisiae. For directing the synthesis and secretion of HLY in S. cerevisiae, two types of expression vectors, a YCp centromere-based vector, pHK101 and a YEp 2-$\mu\textrm{m}$ circle-based vector, pHK501 were constructed. With the resulting plasmids, we have confirmed that yeast transformant harboring pHK501 has more secreted HLY than pHK101-transformant by using a lysoplate and a turbidimetric assay. In flask cultivation, pHK501-transformant produced active HLY about 8 times (55 units/$m\ell$) higher than pHK101-transformant. From batch cultivation, the HLY productivity was obtained with 1.12 units/$m\ell$/h, corresponding to a 1.8-fold increase compared with flask fermentation. These results indicate that yeast transformant with pHK501 vector overexpressed and secreted HLY than that of YCp type vector.

  • PDF

MTT 방법에 의한 항진균성 활성효과의 측정

  • Lee, Dong Gun;Lee, Sung Gu;Kim, Kil Lyong;Hahm, Kyung-Soo
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.3
    • /
    • pp.335-337
    • /
    • 1997
  • In this study, we show a convenient MTT assay for detect the susceptibility of yeast-like form of Trichosporon beigelii against antifungal agents. This assay was developed based on mitocondrial respiration by determining reduction of 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) to formazan. Cells of T beigelii are seeded into 96-well microtiter plates, and antifungal agents, amphotericin B, magainin and CA-ME hybrid peptide were added with various concentrations. After 24 hr incubation, MTT was added, then incubations were continued for 4 hr. Formazan formation was quantified photometrically after extraction of the formazan with acid sodium dodesyl sulfate (SDS). From this assay, we could obtained MICs of antifungal agents against T. beigelii. The presented method can easily be used as an effective methods to assess the antiftingal action of various agents on yeasts with minimal amounts of antifungal agents.

  • PDF

Reduction of Estrogenic Activity by Gamma-ray Treatment (감마선 처리에 의한 에스트로겐 활성 저감 연구)

  • Kang, Sung-Wook;Seo, Jaehwan;Lee, Byoung Cheun;Kim, Suejin;Jung, Jinho
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.6
    • /
    • pp.948-953
    • /
    • 2010
  • In this study, degradation of estrone (E1) and $17{\alpha}$-ethynylestradiol (EE2) by gamma-irradiation and subsequent reduction of estrogenic activity as a function of absorbed dose were conducted using the yeast two-hybrid assay. Relative potency of E1 and EE2 compared to estrogenic activity of $17{\beta}$-estradiol (E2) was found to be 0.0144 and 0.1605, respectively. More than 90% of E1 and EE2 (both $5.0{\times}10^{-6}M$) was removed at an absorbed dose of 5 kGy, but more than 40% of estrogenic activity still remained. The addition of $TiO_2$ catalyst appeared to improve the removal efficiency of E1 and decrease estrogenic activity while there was no significant effect for EE2. Additionally, the calculated estrogenic activity of E1 and EE2 based on a regression model was well correlated with the observed activity.