Browse > Article
http://dx.doi.org/10.5352/JLS.2009.19.7.859

SCG10, a Microtubule-Destabilizing Factor, Interacts Directly with Kinesin Superfamily KIF1A Protein in Brain  

Moon, Il-Soo (Departments of Anatomy, College of Medicine, Dongguk University)
Seog, Dae-Hyun (Departments of Biochemistry, College of Medicine, Inje University)
Publication Information
Journal of Life Science / v.19, no.7, 2009 , pp. 859-865 More about this Journal
Abstract
Microtubules, a major cytoskeleton, form parallel arrays in the axon and are oriented with their plus ends toward the cell periphery. Kinesin superfamily proteins (KIFs) are the molecular motors acting in the microtubule-based motilities of organelles in cells. Here, we used the yeast two-hybrid system to identify the protein that interacts with the coiled-coil domain of KIF1A and found a specific interaction with microtubule-destabilizing factor SCG10. SCG10 bound to the amino acid residues between 400 and 820 of KIF1A, but not to other KIFs in the yeast two-hybrid assay. The coiled-coil domain of SCG10 is essential for interaction with KIF1A. In addition, this specific interaction was also observed in the Glutathione S-transferase pull-down assay. An antibody to SCG10 specifically co-immunoprecipitated KIF1A associated with SCG10 from mouse brain extracts. These results suggest that KIF1A motor protein transports SCG10-containing vesicles along microtubules in neurons.
Keywords
Kinesin; SCG10; molecular motors; microtubule; binding protein;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Williamson, T. L. and D. W. Cleveland. 1999. Slowing of axonal transport is a very early event in the toxicity of ALS-linked SOD1 mutants to motor neurons. Nat. Neurosci. 2, 50-56   DOI   ScienceOn
2 Yang, J. T., R. A. Laymon, and L. S. Goldstein. 1989. A three-domain structure of kinesin heavy chain revealed by DNA sequence and microtubule binding analyses. Cell 56, 879-889   DOI   ScienceOn
3 Zakharenko, S. S., J. Joseph, S. Vronskaya, D. Yin, U. K. Schubart, E. R. Kandel, and V. Y. Bolshakov. 2005. Stathmin, a gene enriched in the amygdala, controls both learned and innate fear. Cell 123, 697-709   DOI   ScienceOn
4 Zhao, C., J. Takita, Y. Tanaka, M. Setou, T. Nakagawa, S. Takeda, H. W. Yang, S. Terada, T. Nakata, Y. Takei, M. Saito, S. Tsuji, Y. Hayashi, and N. Hirokawa. 2001. Charcot-Marie-Tooth disease type 2A caused by mutation in a microtubule motor KIF1Bbeta. Cell 105, 587-597   DOI   ScienceOn
5 Stein, R., S. Orit, and D. J. Anderson. 1988. The induction of a neural-specific gene, SCG10, by nerve growth factor in PC12 cells is transcriptional, protein synthesis dependent, and glucocorticoid inhibitable. Dev. Biol. 127, 316-325   DOI   ScienceOn
6 Suh, L. H., S. F. Oster, S. S. Soehrman, G. Grenningloh, and D. W. Sretavan. 2004. L1/Laminin modulation of growth cone response to EphB triggers growth pauses and regulates the microtubule destabilizing protein SCG10. J. Neurosci. 24, 1976-1986   DOI   ScienceOn
7 Warita, H., Y. Itoyama, and K. Abe. 1999. Selective impairment of fast anterograde axonal transport in the peripheral nerves of asymptomatic transgenic mice with a G93A mutant SOD1 gene. Brain Res. 819, 120-131   DOI   ScienceOn
8 Tararuk, T., N. Ostman, W. Li, B. Bjorkblom, A. Padzik, J. Zdrojewska, V. Hongisto, T. Herdegen, W. Konopka, M. J. Courtney, and E. T. Coffey. 2006. JNK1 phosphorylation of SCG10 determines microtubule dynamics and axodendritic length. J. Cell Biol. 173, 265-277   DOI   ScienceOn
9 Vale, R. D. 2003. The molecular motor toolbox for intracellular transport. Cell 112, 467-480   DOI   ScienceOn
10 Verhey, K. J., D. Meyer, R. Deehan, J. Blenis, B. J. Schnapp, T. A. Rapoport, and B. Margolis. 2001. Cargo of kinesin identified as JIP scaffolding proteins and associated signaling molecules. J. Cell Biol. 152, 959-970   DOI   ScienceOn
11 Setou, M., T. Nakagawa, D. H. Seog and N. Hirokawa. 2000. Kinesin superfamily motor protein KIF17 and mLin-10 in NMDA receptor-containing vesicle transport. Science 288, 1796-1802   DOI   ScienceOn
12 Stein, R., N. Mori, K. Matthews, L. C. Lo, and D. J. Anderson. 1988. The NGF-inducible SCG10 mRNA encodes a novel membrane-bound protein present in growth cones and abundant in developing neurons. Neuron 1, 463-476   DOI   ScienceOn
13 Okazaki, T., B. N. Yoshida, K. B. Avraham, H. Wang, C. W. Wuenschell, N. A. Jenkins, N. G. Copeland, D. J. Anderson, and N. Mori. 1993. Molecular diversity of the SCG10/stathmin gene family in the mouse. Genomics 18, 360-373   DOI   ScienceOn
14 Poulain, F. E. and A. Sobel. 2007. The 'SCG10-LIke Protein' SCLIP is a novel regulator of axonal branching in hippocampal neurons, unlike SCG10. Mol. Cell Neurosci. 34, 137-146   DOI   ScienceOn
15 Schubart, U. K., J. Yu, J. A. Amat, Z. Wang, M. K. Hoffmann, and W. Edelmann. 1996. Normal development of mice lacking metablastin (P19), a phosphoprotein implicated in cell cycle regulation. J. Biol. Chem. 271, 14062-14066   DOI   ScienceOn
16 Reid, E., M. Kloos, A. Ashley-Koch, L. Hughes, S. Bevan, I. K. Svenson, F. L. Graham, P. C. Gaskell, A. Dearlove, M. A. Pericak-Vance, D. C. Rubinsztein, and D. A. Marchuk. 2002. A kinesin heavy chain (KIF5A) mutation in hereditary spastic paraplegia (SPG10). Am. J. Hum. Genet. 71, 1189-1194   DOI   ScienceOn
17 Riederer, B. M., V. Pellier, B. Antonsson, G. Di Paolo, S. A. Stimpson, R. Lutjens, S. Catsicas, and G. Grenningloh. 1997. Regulation of microtubule dynamics by the neuronal growth-associated protein SCG10. Proc. Natl. Acad. Sci. USA 94, 741-745   DOI   ScienceOn
18 Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual. 3rd Edition. Cold Spring Habor Laboratory, Cold Spring Habor, New York
19 Seog, D. H. and I. S. Moon. 2008. $\gamma$-Aminobutyric acid transporter 2 binds to the PDZ domain of mammalian Lin-7. Journal of Life Science 18, 940-946   DOI   ScienceOn
20 Seog, D. H., D. H. Lee, and S. K. Lee. 2004. Molecular motor proteins of the kinesin superfamily proteins (KIFs): structure, cargo and disease. J. Korean Medical Science 19, 1-7   DOI   ScienceOn
21 Kim, S. J., C. H. Lee, H. Y. Park, S. S. Yea, W. H. Jang, S. K. Lee, Y. H. Park, O. S. Cha, I. S. Moon, and D. H. Seog. 2007. JSAP1 interacts with kinesin light chain 1 through conserved binding segments. Journal of Life Science 17, 889-895   DOI   ScienceOn
22 Klopfenstein, D. R. and R. D. Vale. 2004. The lipid binding pleckstrin homology domain in UNC-104 kinesin is necessary for synaptic vesicle transport in Caenorhabditis elegans. Mol. Biol. Cell 15, 3729-3739   DOI   ScienceOn
23 Nangaku, M., R. Sato-Yoshitake, Y. Okada, Y. Noda, R. Takemura, H. Yamazaki, and N. Hirokawa. 1994. KIF1B, a novel microtubule plus end-directed monomeric motor protein for transport of mitochondria. Cell 79, 1209-1220   DOI   ScienceOn
24 Lutjens, R., M. Igarashi, V. Pellier, H. Blasey, G. Di Paolo, E. Ruchti, C. Pfulg, J. K. Staple, S. Catsicas, and G. Grenningloh. 2000. Localization and targeting of SCG10 to the trans-Golgi apparatus and growth cone vesicles. Eur. J. Neurosci. 12, 2224-2234   DOI   ScienceOn
25 Miki, H., M. Setou, K. Kaneshiro, and N. Hirokawa. 2001. All kinesin superfamily protein, KIF, genes in mouse and human. Proc. Natl. Acad. Sci. USA 98, 7004-7011   DOI   ScienceOn
26 Mori, N. and H. Morii. 2002. SCG10-related neuronal growth-associated proteins in neural development, plasticity, degeneration, and aging. J. Neurosci. Res. 70, 264-273   DOI   ScienceOn
27 Niwa, S., Y. Tanaka, and N. Hirokawa. 2008. KIF1Bbetaand KIF1A-mediated axonal transport of presynaptic regulator Rab3 occurs in a GTP-dependent manner through DENN/MADD. Nat. Cell Biol. 10, 1269-1279   DOI   ScienceOn
28 Okada, Y., H. Yamazaki, Y. Sekine-Aizawa, and N. Hirokawa. 1995. The neuron-specific kinesin superfamily protein KIF1A is a unique monomeric motor for anterograde axonal transport of synaptic vesicle precursors. Cell 81, 769-780   DOI   ScienceOn
29 Grenningloh, G., S. Soehrman, P. Bondallaz, E. Ruchti, and H. Cadas. 2004. Role of the microtubule destabilizing proteins SCG10 and stathmin in neuronal growth. J. Neurobiol. 58, 60-69   DOI   ScienceOn
30 Griffin, J. W. and D. F. Watson. 1988. Axonal transport in neurological disease. Ann. Neurol. 23, 3-13   DOI   ScienceOn
31 Hirokawa, N., and Y. Noda. 2008. Intracellular transport and kinesin superfamily proteins, KIFs: structure, function, and dynamics. Physiol. Rev. 88, 1089-1118   DOI   ScienceOn
32 Hall, D. H. and E. M. Hedgecock. 1991. Kinesin-related gene unc-104 is required for axonal transport of synaptic vesicles in C. elegans. Cell 65, 837-847   DOI   ScienceOn
33 Heidemann, S. R., J. M. Landers, and M. A. Hamborg. 1981. Polarity orientation of axonal microtubules. J. Cell Biol. 91, 661-665   DOI   ScienceOn
34 Hirokawa, N. 1998. Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science 279, 519-526   DOI   ScienceOn
35 Hurd, D. D. and W. M. Saxton. 1996. Kinesin mutations cause motor neuron disease phenotypes by disrupting fast axonal transport in Drosophila. Genetics 144, 1075-1085
36 Kamal, A. and L. S. Goldstein. 2000. Connecting vesicle transport to the cytoskeleton. Curr. Opin. Cell Biol. 12, 503-508   DOI   ScienceOn
37 Kanai, Y., Y. Okada, Y. Tanaka, A. Harada, S. Terada, and N. Hirokawa. 2000. KIF5C, A novel neuronal kinesin enriched in motor neurons. J. Neurosci. 20, 6374-6384
38 Karcher, R. L., S. W. Deacon, and V. I. Gelfand. 2002. Motor-cargo interactions: the key to transport specificity. Trends Cell Biol. 12, 21-27   DOI   ScienceOn
39 Dell, K. R. 2003. Dynactin polices two-way organelle traffic. J. Cell Biol. 160, 291-293   DOI   ScienceOn
40 Dent, E. W. and F. B. Gertler. 2003. Cytoskeletal dynamics and transport in growth cone motility and axon guidance. Neuron 40, 209-227   DOI   ScienceOn
41 Dorner, C., A. Ullrich, H. U. Haring, and R. Lammers. 1999. The kinesin-like motor protein KIF1C occurs in intact cells as a dimer and associates with proteins of the 14-3-3 family. J. Biol. Chem. 274, 33654-33660   DOI   ScienceOn
42 Di Paolo, G., R. Lutjens, A. Osen-Sand, A. Sobel, S. Catsicas, and G. Grenningloh. 1997. Differential distribution of stathmin and SCG10 in developing neurons in culture. J. Neurosci. Res. 50, 1000-1009   DOI   ScienceOn
43 Di Paolo, G., R. Lutjens, V. Pellier, S. A. Stimpson, M. H. Beuchat, S. Catsicas, and G. Grenningloh. 1997. Targeting of SCG10 to the area of the Golgi complex is mediated by its NH2-terminal region. J. Biol. Chem. 272, 5175-5182   DOI   ScienceOn
44 Dorner, C., T. Ciossek, S. Muller, P. H. Moller, A. Ullrich, and R. Lammers. 1998. Characterization of KIF1C, a new kinesin-like protein involved in vesicle transport from the Golgi apparatus to the endoplasmic reticulum. J. Biol. Chem. 273, 20267-20275   DOI   ScienceOn
45 Goldstein, L. S. and Z. Yang. 2000. Microtubule-based transport systems in neurons: the roles of kinesins and dyneins. Annu. Rev. Neurosci. 23, 39-71   DOI   ScienceOn
46 Goldstein, L. S. 2001. Kinesin molecular motors: transport pathways, receptors, and human disease. Proc. Natl. Acad. Sci. U S A 98, 6999-7003   DOI   ScienceOn
47 Gordon-Weeks, P. R. 2004. Microtubules and growth cone function. J. Neurobiol. 58, 70-83   DOI   ScienceOn
48 Baas, P. W., J. S. Deitch, M. M. Black, and G. A. Banker. 1988. Polarity orientation of microtubules in hippocampal neurons: uniformity in the axon and nonuniformity in the dendrite. Proc. Natl. Acad. Sci. USA 85, 8335-8339   DOI   ScienceOn
49 Aizawa, H., Y. Sekine, R. Takemura, Z. Zhang, M. Nangaku, and N. Hirokawa. 1992. Kinesin family in murine central nervous system. J. Cell Biol. 119, 1287-1296   DOI   ScienceOn
50 Almenar-Queralt, A. and L. S. Goldstein. 2001. Linkers, packages and pathways: new concepts in axonal transport. Curr. Opin. Neurobiol. 11, 550-557   DOI   ScienceOn
51 Burton, P. R. 1988. Dendrites of mitral cell neurons contain microtubules of opposite polarity. Brain Res. 473, 107-115   DOI   ScienceOn
52 Cassimeris, L. 2002. The oncoprotein 18/stathmin family of microtubule destabilizers. Curr. Opin. Cell Biol. 14, 18-24   DOI   ScienceOn