• 제목/요약/키워드: yeast cell wall

검색결과 106건 처리시간 0.024초

Dicyma sp. YCH-37이 생산하는 효모세포벽 용해효소 II. 효소활성에 미치는 기질 효모의 배양조건 및 전처리 효과 (Yeast Cell Wall Lytic Enzyme Produced by Dicyma sp. YCH-37 II. Effect of Culture Conditions and Pretreatment of Yeast on the Enzyme Activity)

  • 정희철;함병권;유주현;배동훈
    • 한국식품과학회지
    • /
    • 제29권5호
    • /
    • pp.1021-1027
    • /
    • 1997
  • Dicyma sp. YCH-37이 생산하는 효모세포벽 용해효소의 성질을 검토한 결과, 각종 환원제와 금속이온에 대체로 안정하였고, guanidine-HCl을 제외한 여러 화학수식제에 대해서도 안정하였다. 배양시간, 전처리 및 배양조건에 따른 영향을 검토한 결과, 정지기 및 사멸기에 있는 효모보다는 대수증식기의 효모, 그리고 생효모에 비해 열처리된 효모가 더 잘 용균되었다. Butanol, acetone 등의 유기용매로 처리된 효모가 그렇지 않은 효모보다 용균도가 좋았으며, 0.5 M ammonium sulfate가 함유된 Yeast extract-Malt extract 배지에서 생육한 효모, 그리고 진탕배양한 효모보다 정치배양한 효모가 용균효소에 의해 더 잘 용균되었다. SDS, Triton X-100, ${\beta}-mercaptoethanol$, potassium chloride, sodium sulfite 등의 화학수식제를 효소반응액에 첨가하였을 때 기질 효모는 더 잘 용균되었다.

  • PDF

Arthrobacter luteus가 생산하는 AL-Protease의 효모세포벽 용해 촉진작용 (The Synergistic Action of the AL-Protease from Arthrobacter luteus on the Lysis of Yeast Cell Walls)

  • 오홍록;선진승
    • 한국식품영양과학회지
    • /
    • 제14권4호
    • /
    • pp.401-408
    • /
    • 1985
  • 효모세포벽 용해효소의 일종인 Zymolyase$(endo-{\beta}-1\;,3-glucanase)$와 더불어 Arthrobacter luteus로 부터 생산되었고, 또한 Zymolyase의 조효소중에서 발견된 바 있는 염기성 AL-protease의 효모세포벽 용해작용을 S. sake의 생세포와 그 세포벽 표품(標品)을 사용하여 조사하였다. AL-protease의 효모 생세포에 대한 용해활성은 그 단독작용만으로는 지극히 미약하였으나, Zymolyase와의 복합작용에 의해서 용해활성은 고도로 상승하였다. 효모생세포를 AL-protease와 Zymolyase로써 단계적인 처리를 할 경우, 효모세포는 AL-protease로 전처리된 뒤에 Zymolyase로 처리되는 처리 순서에 한하여 효과적으로 용해되었다. 이러한 AL-protease의 촉진적 작용은 AL-protease처럼 염기성이고 serine protease로 알려진 몇가지 시판의 효소들 중에서는 발견되지 않았으며, 또한 AL-protease의 이러한 작용은 실험에 사용된 효모들의 배양조건 및 균종에 따라서 커다란 영향을 받는 것으로 밝혀졌다. AL-protease는 효모세포벽 표품(標品)으로부터 일정량의 peptide와 상당량의 당을 유리시키고 있으나, 그 세포벽을 66% 이상은 용해시키지 못하였다. 반면에, Zymolyase는 그 단독작용으로도 효모세포벽을 거의 완전히 용해시킬 수 있었다. 이상의 실험결과를 기초로 하여, S. sake 세포벽의 용해에 있어서 AL-protease의 효소적 작용은, 먼저 AL-protease가 mannan과 단백질로 구성되는 세포벽 표층부에 결합하고, 이어서 그들의 구조를 변화시킴으로써, Zymolyase를 세포벽의 외부로 부터 알카리 불용성 glucan으로 구축되고 있는 세포벽 내부의 골격구조로까지의 침투를 촉진시키는 것으로 추론되었다.

  • PDF

화학적 처리방법에 의한 효모의 세포벽 제거 (The Disruption Yeast Cell Wall by chemical Treatment)

  • 문정혜;김중균
    • 생명과학회지
    • /
    • 제8권2호
    • /
    • pp.197-202
    • /
    • 1998
  • 효모를 먹이로 하는 filter-feeder들의 소화력을 높이고자, algae의 대용물로서 가치가 있는 Kluyveromuces fragilis효모를 화학적 처리방법에 의해 세포벽을 바괴시켰다. 화학적 처리방법의 최적조건은 0.2 M Tris-buffer에 용해시켜 만든 1M 의 $Na_2EDTA$와 0.3 M의 2-mercaptoethanol을 처리한 후 $30{\circ}C$배양기에서 1시간 배양하는 조건에서 얻어졌다. 이때, 약 30%의 protoplast yeast를 실시함으로써, 그 생성률을 약 2배이상 올릴 수 있었다.

  • PDF

Isolation of Novel Alkalophilic Bacillus alcalophilus subsp. YB380 and the Characteristics of Its Yeast Cell Wall Hydrolase

  • Yeo, Ik-Hyun;Han, Suk-Kyun;Yu, Ju-Hyun;Bai, Dong-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • 제8권5호
    • /
    • pp.501-508
    • /
    • 1998
  • An alkalophilic mi.croorganism (strain YB380), which produces yeast cell wall hydrolase extracellulary, was isolated from Korean soil. The rod-shaped cells were 0.3~0.4 by 2~4${\mu}{\textrm}{m}$ long, motile, aerobic, gram-positive, and spore-forming. The color of the colony was light yellow. The temperature range for growth at pH 9.0 was 25 to $45{\circ}C, with optimum growth at $35{\circ}C. The pH range for growth at $35{\circ}C was 8 to 11 with an optimum pH of 9.0. Therefore, the strain YB380 is an obligate alkalophile. The 16S rRNA of strain YB380 has a 99% sequence similarity with that of Bacillus alcalophilus. On the basis of physiological properties, cell wall fatty acid composition, and phylogenetic analysis, we propose that the isolated strain is Bacillus alcalophilus. The yeast cell wall hydrolase from Bacillus alcalophilus subsp. YB380 has been purified and partially characterized. The molecular weight was estimated to be 27,000 daltons with an optimum temperature and pH of $60{\circ}C and 9.0, respectively. The N-terminal amino acid sequence of the enzyme was analyzed as Gln- Thr- Val- Pro- Trp- Gly- Ile- Asn- Arg- Val.

  • PDF

Immune-Enhancing Alkali-Soluble Glucans Produced by Wild-Type and Mutant Saccharomyces cerevisiae

  • Ha Chang-Hoon;Lim Ki-Hong;Jang Se-Hwan;Yun Cheol-Won;Paik Hyun-Dong;Kim Seung-Wook;Kang Chang-Won;Chang Hyo-Ihl
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권4호
    • /
    • pp.576-583
    • /
    • 2006
  • The alkali-soluble glucan of the yeast cell wall contains $\beta-(1,3)-$ and (1,6)-D-linkages and is known to systemically enhance the immune system. In the previous study [6], in order to isolate cell wall mutants, a wild-type strain was mutagenized by exposure to ultraviolet light, and the mutants were then selected via treatment with laminarinase $(endo-\beta-(1,3)-D-glucanase)$. The mass of alkali- and water-soluble glucans produced by the mutant was measured to be 33.8 mg/g of the dry mass of the yeast cell. Our results showed that the mutants generated the amount of alkali-soluble glucan 10-fold higher than that generated by the wild-type. Structural analysis showed that the alkali-soluble glucan from the mutants was associated with a higher degree of $\beta-(1,6)-D-linkage$ than was observed in conjunction with the wild-type. Yeast cell wall $\beta-glucan$ was shown to interact with macrophages via receptors, thereby inducing the release of tumor necrosis factor alpha $(TNF-\alpha)$ and nitric oxide. Alkali-soluble $\beta-glucans$, both from water-soluble and water-insoluble glucan, exhibited a higher degree of macrophage activity with regard to both the secretion of tumor necrosis factor alpha $(TNF-\alpha)$ and nitric oxide and direct phagocytosis, than did the positive control ($1{\mu}g$ of lipopolysaccharide).

반응표면분석법을 이용하여 Sacharomyces cerevisaeJUL3의 균체량 생산을 위한 배지조성 최적화 (Optimization of Medium Components for Cell Mass Production of Saccharomyces cerevisiae JUL3 using Response Surface Methodology)

  • 김영환;강성우;이종호;장효일;윤철원;백현동;강창원;김승욱
    • KSBB Journal
    • /
    • 제21권6호
    • /
    • pp.479-483
    • /
    • 2006
  • 본 연구는 효모의 세포벽에 존재하는 본 연구는 효모의 세포벽에 존재하는 ${\beta}-Glucan$을 대량생산하기 위해 Saccharomyces cerevisiae JUL3의 균체량을 증가시키기 위한 연구를 수행하였다. S. cerevisiae JUL3의 배양학적 특성을 알아보기 위해 kinetic parameter를 조사하였을 때 specific growth rate (${\mu}$)는 $0.145\;h^{-1}$, yield ($Y_{x/s}$)는 0.332 g/g, glucose 소모속도($q_{s}$)는 $0.437\;h^{-1}$이며 productivity (P)는 $0.4827\;g/{\ell}{\cdot}h$을 나타내었다. 균체량이 가장 높게 나타난 탄소원과 질소원은 고과당 (high fructose syrup)과 yeast extract이었다. 효모균체 대량생산 및 scale up을 위하여 반응표면 분석법을 통하여 고과당과 yeast extract에 대한 최적농도를 조사하였다. 균체량이 가장 많이 생산되어질 수 있는 조건으로 제시된 고과당과 yeast extract의 최적 농도는 각각 8.0 %와 5.2 %였으며, 이 때 예측되는 균체량은 $16.95\;g/{\ell}$ 이었다.

The Possible Involvement of the Cell Surface in Aliphatic Hydrocarbon Utilization by an Oil-Degrading Yeast, Yarrowia lipolytica 180

  • Kim, Tae-Hyun;Oh, Young-Sook;Kim, Sang-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • 제10권3호
    • /
    • pp.333-337
    • /
    • 2000
  • An oil-degrading yeast, Yarrowia lipolytica 180, exhibits interesting cell surface characteristics under the growth on hydrocarbons. An electron microscopic study revealed that the cells grown on crude oil showed protrusions on the cell surface, and thicker periplasmic space and cell wall than the cell surface, and thicker periplasmic space and cell wall than the cells grown on glucose. Y. lipolytica cells lost its cell hydrophobicity after pronase(0.1 mg/ml) treatment. The strain produced two types of emulsifying materials during the growth on hydrocarbons; one was water-soluble extracellular materials and the other was cell wall-associated materials. Both emulsifying materials at lower concentration (0.12%) enhanced the oil-degrading activity of Moraxella sp. K12-7, which had medium emulsifying activity and negative cell hydrophobicity; however, it inhibited the oil-degrading activity of Pseudomunas sp. K12-5, which had medium emulsifying activity and cell hydrophobicity. These results suggest that the oil-degrading activity of Y. lipolytica 180 is closely associated with cell surface structure, and that a finely controlled application of Y.lipolytica 180 in combination with other oil-degrading microorganisms showed a possible enhancing efficiency of oil degradation.

  • PDF

Leakage of Cellular Materials from Saccharomyces cerevisiae by Ohmic Heating

  • Yoon, Sung-Won;Lee, Chung-Young-J.;Kim, Ki-Myung;Lee, Cherl-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • 제12권2호
    • /
    • pp.183-188
    • /
    • 2002
  • The ohmic heating of foods for sterilization provides a shorter come-up time compared to conventional thermal processes. The electric fields as well as the heat generated by ohmic heating facilitate germicidal effects. In the present study, the effect of ohmic heating on the structure and permeability of the cell membrane of yeast cells, Saccharomyces cerevisae, isolated from Takju (a traditional Korean rice-beer), was investigated. The ohmic heating was found to translocate intracellular protein materials out of the cell wall, and the amount of exuded protein increased significantly as the electric field increased from 10 to 20 V/cm. As higher frequencies were applied, more materials were exuded. Compared to conventional heating, more amounts of proteins and nucleic acids were exuded when these cells were treated with ohmic heating. The molecular weights of the major exuded proteins ranged from 14 kDa to 18 kDa, as analyzed by Tricine-SDS PAGE. A TEM study also confirmed the leakage of cellular materials, thus indicating irreversible damage to the cell wall by ohmic heating. It was, therefore, concluded that the electric fields generated by ohmic heating induced electroporation, causing irreversible damage to the yeast cell wall and promoting the translocation of intracellular materials.

Characterization of Cell Wall Proteins from the soo1-1/ret1-1 Mutant of Saccharomyces cerevisiae

  • Lee, Dong-Won;Kim, Ki-Hyun;Chun, Se-Chul;Park, Hee-Moon
    • Journal of Microbiology
    • /
    • 제40권3호
    • /
    • pp.219-223
    • /
    • 2002
  • In order to investigate the function of Soo1p/${\alpha}$-COP during post-translational modification and intra-cellular transport of cell wall proteins in Saccharomyces cerevisiae, cell wall proteins from the soo1-1/ret1-1 mutant cells were analyzed. SDS-PAGE analysis of biotin labeled cell wall proteins suggested that the soo1-1 mutation impairs post-translational modification of cell wall proteins, such as N- and/ or Ο-glycosylation. Analysis of cell wall proteins with antibodies against ${\beta}$-1,3-glucan and ${\beta}$-1,6-glucan revealed alteration of the linkage between cell wall proteins and ${\beta}$-glucans in the soo1-1 mutant cells. Compositional sugar analysis of the cell wall proteins also suggested that the soo1-1 mutation impairs glycosylation of cell wall protein in the ER, which is crucial for the maintenance of cell wall integrity.

효소 분해법에 의한 맥주효모 추출물의 제조 (Production of Brewer's Yeast Extract by Enzymatic Method)

  • 이시경;박경호;백운화;유주현
    • 한국미생물·생명공학회지
    • /
    • 제21권3호
    • /
    • pp.276-280
    • /
    • 1993
  • Cell lytic enzyme, 5'-phosphodiesterase, and AMP-deaminase were used to produce yeast extract as a natural seasoning from beer yeast cells. Prior to the addition of cell lytic enzyme, heat treatment was performed to increase the cell wall degradation` the optimum condition of the cell lytic enzyme was 50C at pH 7.0. The production yields by the enzymatic method and conventional autolysis method were 42% and 35%, respectively. The total quantity of 5'-nucleotides, GMP and IMP, produced by enzymatic method was increased by 45% than that by the conventional method. Futhermore, the operation time of enzymatic method was only 6.5 hrs, significantly reduced from 24 hrs of the conventional method.

  • PDF