Browse > Article

Immune-Enhancing Alkali-Soluble Glucans Produced by Wild-Type and Mutant Saccharomyces cerevisiae  

Ha Chang-Hoon (School of Life Science and Biotechnology, Korea University)
Lim Ki-Hong (School of Life Science and Biotechnology, Korea University)
Jang Se-Hwan (School of Life Science and Biotechnology, Korea University)
Yun Cheol-Won (School of Life Science and Biotechnology, Korea University)
Paik Hyun-Dong (Division of Animal Life Science, Kon-Kuk University)
Kim Seung-Wook (Department of Chemical and Biological Engineering, Korea University)
Kang Chang-Won (Division of Animal Life Science, Kon-Kuk University)
Chang Hyo-Ihl (School of Life Science and Biotechnology, Korea University)
Publication Information
Journal of Microbiology and Biotechnology / v.16, no.4, 2006 , pp. 576-583 More about this Journal
Abstract
The alkali-soluble glucan of the yeast cell wall contains $\beta-(1,3)-$ and (1,6)-D-linkages and is known to systemically enhance the immune system. In the previous study [6], in order to isolate cell wall mutants, a wild-type strain was mutagenized by exposure to ultraviolet light, and the mutants were then selected via treatment with laminarinase $(endo-\beta-(1,3)-D-glucanase)$. The mass of alkali- and water-soluble glucans produced by the mutant was measured to be 33.8 mg/g of the dry mass of the yeast cell. Our results showed that the mutants generated the amount of alkali-soluble glucan 10-fold higher than that generated by the wild-type. Structural analysis showed that the alkali-soluble glucan from the mutants was associated with a higher degree of $\beta-(1,6)-D-linkage$ than was observed in conjunction with the wild-type. Yeast cell wall $\beta-glucan$ was shown to interact with macrophages via receptors, thereby inducing the release of tumor necrosis factor alpha $(TNF-\alpha)$ and nitric oxide. Alkali-soluble $\beta-glucans$, both from water-soluble and water-insoluble glucan, exhibited a higher degree of macrophage activity with regard to both the secretion of tumor necrosis factor alpha $(TNF-\alpha)$ and nitric oxide and direct phagocytosis, than did the positive control ($1{\mu}g$ of lipopolysaccharide).
Keywords
Alkali-soluble glucan; mannoprotein; yeast cell wall; random mutation;
Citations & Related Records

Times Cited By Web Of Science : 6  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Esteban, A. and J. Meseguer. 2004. Glucan receptor but not mannose receptor is involved in the phagocytosis of Saccharomyces cerevisiae by seabream (Sparus aurata L.) blood leucocytes. Fish Shellfish Immunol. 16: 447-451   DOI   ScienceOn
2 Fleet, G. H. and D. J. Manners. 1976. Isolation and composition of an alkali-soluble glucan from the cell walls of Saccharomyces. J. Gen. Microbiol. 94: 180-192   DOI   ScienceOn
3 Jung, K., Y. Ha, S. K. Ha, D. U. Han, D. W. Kim, W. K. Moon, and C. Chae. 2004. Antiviral effect of Saccharomyces cerevisiae beta-glucan to swine influenza virus by increased production of interferon-gamma and nitric oxide. J. Vet. Med. B. Infect. Dis. Vet. Public Health 51: 72-76   DOI
4 Kurihara, K., N. N. Miura, S. Horie, Y. Usui, Y. Adachi, T. Yadomae, and N. Ohno. 2003. Effect of CAWS, a mannoprotein-beta-glucan complex of Candida albicans, on leukocyte, endothelial cell, and platelet functions in vitro. Biol. Pharm. Bull. 26: 233-240   DOI   ScienceOn
5 Luzio, S. 1961. Identification of a reticuloendothelial stimulating agent in zymosan. Am. J. Physiol. 200: 297-303
6 Ohmura, Y., I. Motokawa, K. Sukarai, and T. Ando. 2001. Protective effects of a protein-bound polysaccharide, PSK, on Candida albicans infection in mice via tumor necrosis factor induction. Int. Immunopharmacol. 1: 1797-1811   DOI   ScienceOn
7 Price, C. W., G. B. Fuson, and H. J. Phaff. 1978. Genome comparison in yeast systematics: Delimitation of species within the genera Schwanniomyces, Saccharomyces, Debaryomyces, and Pichia. Microbiol. Rev. 42: 161-167
8 Schnyder, J. and M. Baggiolini. 1978. Secretion of lysosomal hydrolases by stimulated and nonstimulated macrophages. J. Exp. Med. 148: 435-439   DOI   ScienceOn
9 Tsikitis, V. L., J. E. Albina, and J. S. Reichner. 2004. Betaglucan affects leukocyte navigation in a complex chemotactic gradient. Surgery 136: 384-389   DOI   ScienceOn
10 Tsukada, C., H. Yokoyama, C. Miyaji, Y. Ishimoto, H. Kawamura, and T. Abo. 2003. Immunopotentiation of intraepithelial lymphocytes in the intestine by oral administrations of beta-glucan. Cell Immunol. 221: 1-5   DOI   ScienceOn
11 Williams, D. L., R. B. McNamee, E. L. Jones, H. E. Ensley, and I. W. Browder. 1992. Development of a water-soluble, sulfated $(1{\rightarrow}3)$-beta-D-glucan biological response modifier derived from Saccharomyces cerevisiae. Carbohydr. Res. 235: 247-257   DOI   ScienceOn
12 Hoffman, O. A. and A. H. Limper. 1993. Pneumocystis carinii stimulates tumor necrosis factor-alpha release from alveolar macrophages through a beta-glucan-mediated mechanism. J. Immunol. 150: 3932-3940
13 Jamas, S., C. H. Osten, A. J. Sinskey, and C. K. Rha. 1990. Spectral analysis of glucan produced by wild-type and mutant Saccharomyces cerevisiae. Carbohydr. Polym. 13: 207-219   DOI   ScienceOn
14 Soltys, J., P. Dubinsky, O. Tomasovicova, H. Auer, and H. Aspock. 1996. Effect of glucan immunomodulator on the immune response and larval burdens in mice with experimental toxocarosis. Appl. Parasitol. 37: 161-167
15 Chorvatovicova J. Sandula and G. Kogan. 1999. Protective effect of the yeast glucomannan against cyclophosphamideinduced mutagenicity. Mutat. Res. 444: 117-122   DOI   ScienceOn
16 Kollar, R., B. B. Reinhold, E. Petrakova, H. J. Yeh, G. Ashwell, J. Drgonova, J. C. Kapteyn, F. M. Klis, and E. Cabib. 1997. Architecture of the yeast cell wall. Beta$(1{\rightarrow}6)$- glucan interconnects mannoprotein, beta$(1{\rightarrow})3$-glucan, and chitin. J. Biol. Chem. 272: 17762-17775   DOI   ScienceOn
17 Ito, H., S. Kuroda, H. Sakamoto, J. Kajihara, T. Kiyota, H. Hayashi, M. Kato, and M. Seko. 1986. Molecular cloning and expression in Escherichia coli of the cDNA coding for rabbit tumor necrosis factor. DNA 5: 149-156   DOI   ScienceOn
18 Van Berkel, M. A., R. C. Montijn, and F. M. Klis. 1994. Glycosylation of chimeric proteins in the cell wall of Saccharomyces cerevisiae. FEBS Lett. 349: 135-138   DOI   ScienceOn
19 Ha, C. H., Y. T. Kim, S. T. Lim, C. W. Kim, and H. I. Chang. 2002. Analysis of alkali-soluble glucan produced by Saccharomyces cerevisiae wild-type and mutants. Appl. Microbiol . Biotechnol. 58: 370-377   DOI
20 Ross, G. D., J. Yan, Y. Xia, and J. Vetvickova. 1999. Therapeutic intervention with complement and $\beta$-glucan in cancer. Immunopharmacology 42: 61-74   DOI   ScienceOn
21 Lee, J. N., I. H. Ji, G. E. Kim, H. N. Kim, J. W. Sohn, S. D. Kim, and C. W. Kim. 2001. Purification of soluble beta glucan with immune enhancing activity from the cell wall of yeast. Biosci. Biotechnol. Biochem. 65: 837-841   DOI   ScienceOn
22 Schnyder, J. and M. Baggiolini. 1980. Induction of plasminogen activator secretion in macrophages by electrochemical stimulation of the hexose monophosphate shunt with methylene blue. Proc. Natl. Acad. Sci. USA 77: 414-419
23 Sakurai, T., N. Ohno, and T. Yadomae. 1999. Effects of fungal glucan and interferon on the secretory functions of murine alveolar macrophages. J. Leuk. Biol. 60: 118-124
24 Czop, J. K. and J. Kay. 1991. Isolation and characterization of glucan receptors on human mononuclear phagocytes. J. Exp. Med. 173: 1511-1518   DOI   ScienceOn
25 Jamas, S., C. K. Rha, and A. J. Sinskey. 1986. Morphology of yeast cell wall as affected by genetic manipulation of (1-6) glycosidic linkage. Biotech. Bioeng. 28: 769-784   DOI   ScienceOn
26 Paulik, S., S. Svrcek, M. Huska, J. Mojzisova, A. Durove, and Z. Benisek. 1992. The effect of fungal and yeast glucan and levamisole on the level of the cellular immune response in vivo and leukocyte phagocytic activity in mice. Vet. Med. (Praha) 37: 675-681
27 Sakurai, T., N. Ohno, and T. Yadomae. 1994. Changes in immune mediators in mouse lung produced by administration of soluble $(1{\rightarrow}3)$-beta-D-glucan. Biol. Pharm. Bull. 17: 617-624   DOI   ScienceOn
28 Kozel, T. R., A. Percival, and Q. Zhou. 2004. Biological activities of naturally occurring antibodies reactive with Candida albicans mannan. Infect. Immun. 72: 209-218   DOI
29 Schnyder, J. and M. Baggiolini. 1978. Role of phagocytosis in the activation of macrophages. J. Exp. Med. 148: 1449- 1454   DOI   ScienceOn
30 Kramer, S. M. and M. E. Carver. 1986. Serum-free in vitro bioassay for the detection of tumor necrosis factor. J. Immunol. Methods 93: 201-208   DOI   ScienceOn
31 Hong, F., J. Yan, D. J. Allendorf, J. T. Baran, G. R. Ostroff, and G. D. Ross. 2003. Beta-glucan functions as an adjuvant for monoclonal antibody immunotherapy by recruiting tumoricidal granulocytes as killer cells. Cancer Res. 63: 9023-9031
32 Stephen, X. R. A. Ruckmana, Joseph, F. Borzellecac, Chad, and B. Sanduskyd. 2004. Toxicological and metabolic investigations of the safety of N-a-Lauroyl-l-arginine ethyl ester monohydrochloride (LAE). Food Chem. Toxicol. 42: 245-259   DOI   ScienceOn
33 Vassallo, R. and A. H. Limper. 2000. Isolated Pneumocystis carinii cell wall glucan provokes lower respiratory tract inflammatory responses. J. Immunol. 164: 3755-3763   DOI
34 Ding, A. H. and D. J. Stuehr. 1988. Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages. Comparison of activating cytokines and evidence for independent production. J. Immunol. 141: 2407-2412
35 Ohno, N., T. Hashimoto, Y. Adachi, and T. Yadomae. 1996. Effect of glucans on the nitric oxide synthesis by peritoneal macrophage in mice. Biol. Pharm. Bull. 19: 608-612   DOI   ScienceOn