• Title/Summary/Keyword: yaw motion control

Search Result 119, Processing Time 0.026 seconds

Analysis of instrument exercise using IMU about symmetry

  • Yohan Song;Hyun-Bin Zi;Jihyeon Kim;Hyangshin Ryu;Jaehyo Kim
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.1
    • /
    • pp.296-305
    • /
    • 2023
  • The purpose of this study is to measure and compare the balance of motion between the left and right using a wearable sensor during upper limb exercise using an exercise equipment. Eight participants were asked to perform upper limb exercise using exercise equipment, and exercise data were measured through IMU sensors attached to both wrists. As a result of the PCA test, Euler Yaw(Left: 0.65, Right: 0.75), Roll(Left: 0.72, Right: 0.58), and Gyro X(Left: 0.64, Right: 0.63) were identified as the main components in the Butterfly exercise, and Euler Pitch(Left: 0.70, Right 0.70) and Gyro Z(Left: 0.70, Right: 0.71) were identified as the main components in the Lat pull down exercise. As a result of the Paired-T test of the Euler value, Yaw's Peak to Peak at Butterfly exercise and Roll's Mean, Yaw's Mean and Period at Lat pull down exercise were smaller than the significance level of 0.05, proving meaningful difference was found. In the Symmetry Index and Symmetry Ratio analysis, 89% of the subjects showed a tendency of dominant limb maintaining relatively higher angular movement performance then non-dominant limb as the Butterfly exercise proceeds. 62.5% of the subjects showed the same tendency during the Lat pull down exercise. These experimental results indicate that meaningful difference at balance of motion was found according to an increase in number of exercise trials.

Roll/Yaw Momentum Management Method of Pitch Momentum Biased Spacecraft (피치 모멘텀 바이어스 위성시스템의 롤/요축 모멘텀 제어방식)

  • Rhee, Seung-Wu;Ko, Hyun-Chul;Jang, Woo-Young;Son, Jun-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.7
    • /
    • pp.669-677
    • /
    • 2009
  • In general, the pitch momentum biased system that induces inherently nutational motion in roll/yaw plane, has been adapted for geosynchronous communications satellites. This paper discusses the method of roll attitude control using yaw axis momentum management method for a low earth orbit(LEO) satellite which is a pitch momentum biased system equipped with only two reaction wheels. The robustness of wheel momentum management method with PI-controller is investigated comparing with wheel torque control method. The transfer function of roll/yaw axis momentum management system that is useful for attitude controller design is derived. The disturbance effect of roll/yaw axis momentum management system for attitude control is investigated to identify design parameters such as magnitude of momentum bias and to get the insight for controller design. As an example, the PID controller design result of momentum management system for roll/yaw axis control is provided and the simulation results are presented to provide further physical insight into the momentum management system.

Interval Type-2 Fuzzy Logic Control System of Flight Longitudinal Motion (항공기 종 제어를 위한 Interval Type-2 퍼지논리 제어시스템)

  • Cho, Young-Hwan;Lee, Hong-Gi;Jeon, Hong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.2
    • /
    • pp.168-173
    • /
    • 2015
  • The flight control of aircraft, which has nonlinear time-varying dynamic characteristics depending on the various and unexpected external conditions, can be performed on two motions: longitudinal motion and lateral motion. In the longitudinal motion control of aircraft, pitch and trust are major control parameters and roll and yaw are control ones in the lateral motion control. Until now, a number of efficient and reliable control schemes that can guarantee the stability and maneuverability of the aircraft have been developed. Recently, the intelligent flight control scheme, which differs from the conventional control strategy requiring the various and complicate procedures such as the wind tunnel and environmental experiments, has attracted attention. In this paper, an intelligent longitudinal control scheme has been proposed utilizing Interval Type-2 fuzzy logic which can be recognized as a representative intelligent control methodology. The results will be verified through computer simulation with a F-4 jet fighter.

The Study on Lateral Motion of Crane Driving Mechanism (크레인 구동부의 Lateral Motion에 관한 연구)

  • 이형우;이성섭;박찬훈;박경택;이만형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.703-707
    • /
    • 2000
  • This paper studied on the lateral motion of the gantry crane which is used for the automated container terminal. Though several problems are occurred in driving of gantry crane, they are solved by the motion by the operator. But, if the gantry crane is unmanned, it is automatically controlled without any human operation. Especially, the collision between wheel-flange and rail is a very critical problem in driving of unmanned gantry crane. To bring a solution to these problems, the lateral and yaw dynamic equations of the driving mechanism of gantry crane are derived. And this study used PD(Proportional-Derivative) Controller to control the lateral displacement and the yaw angle. The simulation result of the driving mechanism using the Runge-Kutta method is presented in this paper.

  • PDF

Design and Tracking Control of 4-DOF Motion Platform for Bicycle Simulator (자전거 시뮬레이터용 4자유도 운동판의 설계 및 추적 제어)

  • 성지원;신재철;이종원
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.235-240
    • /
    • 2001
  • A four degrees of freedom (dof) motion platform for bicycle simulator is developed. The motion platform, capable of the vertical linear and three angular motions, is designed based on analysis of the typical motion characteristics revealed by the existing six dof bicycle simulator. The platform essentially consists of two parts: the three dof parallel manipulator, consisting of a moving platform, a fixed base and three actuators, and the turntable to generate the yaw motion. The nonlinear kinematics and dynamics of the three dof parallel manipulator with multiple closed loop chains are analyzed for tracking control of the motion platform. The tracking performances of the three control schemes are experimentally compared: the computed torque method (CTM), the sliding mode control (SMC) and the PD control. The CTM and SMC, incorporated with the system dynamics model, are found to be equally better in performance than the PD controller, irrespective of the presence of external disturbance.

  • PDF

Simulation of Vehicle Steering Control through Differential Braking (차동 제동을 이용한 조향 제어 시뮬레이션)

  • 제롬살랑선네;윤여흥;장봉춘;이성철
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.11
    • /
    • pp.65-74
    • /
    • 2002
  • This paper examines the usefulness of a Brake Steer System (BSS), which uses differential brake forces for steering intervention in the context of Intelligent Transportation Systems (ITS). In order to help the car to turn, a yaw moment can be achieved by altering the left/right and front/rear brake distribution. This resulting yaw moment on the vehicle affects lateral position thereby providing a limited steering function. The steering function achieved through BSS can then be used to control lateral position in an unintended road departure system. A 8-DOF nonlinear vehicle model including STI tire model will be validated using the equations of motion of the vehicle. Then a controller will be developed. This controller, which will be a PID controller tuned by Ziegler-Nichols, will be designed to explore BSS feasibility by modifying the brake distribution through the control of the yaw rate of the vehicle.

A Comparative Study on the Response Characteristics of the Semi-submersible Platform of a 15 MW Floating Offshore Wind Turbine System in Operational Conditions (15 MW급 부유식 해상풍력발전시스템 반잠수식 플랫폼의 운용 조건 중 응답 특성 비교 연구)

  • Hyeon-Jeong Ahn;Yoon-Jin Ha;Se-Wan Park;Kyong-Hwan Kim
    • Journal of Wind Energy
    • /
    • v.13 no.4
    • /
    • pp.17-25
    • /
    • 2022
  • In this study, the response characteristics of two semi-submersible platforms with an IEA 15 MW reference wind turbine are compared. The nacelle acceleration, platform motion and generator power of FOWT applying a VolturnUS-S platform developed by the University of Maine and PentaSemi platform developed by the Korea Research Institute of Ships and Ocean Engineering are compared in operational conditions. Numerical simulations are performed based on the marine environmental conditions of the U.S east coast. In the FOWT to which the PentaSemi platform is applied, the nacelle acceleration and platform pitch angle are rather high, but the results of both platforms satisfied the design criteria at all operating wind speeds. The platform yaw angle of PentaSemi platform to which a yaw control catenary mooring system is applied is significantly smaller than the platform yaw angle of VolturnUS-S. Also, despite the relatively large nacelle acceleration and platform pitch angle, the generator power is higher on the PentaSemi platform. This means that the generator power dominates the control system rather than the nacelle and platform motion.

A Study on the Full Active 4WS Control Method Using Nonlinear Tire Model (비선형 타이어모델을 이용한 완전능동형 4WS 제어방법에 관한 연구)

  • 김형내;김석일;김동룡;김건상
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.3
    • /
    • pp.76-85
    • /
    • 1997
  • The understeer characteristics of four wheel steering system(4WS system) in a high speed region have a negative effect upon the yaw velocity, leading to a decrease in the handling ability of vehicle. As a result, even if the side slip angle of vehicle can be kept up a minimum, a driver must compensate a decrease in yaw velocity by increasing the steering wheel angle in order to track the desired vehicle path. In this study, to keep the side slip angle of vehicle at zero and achieve a suitable yaw velocity in vehicle motion, a full active 4WS system(FA 4WS system) with actively steerable front and rear wheels is presented based on a nonlinear vehicle model and a model following control of yaw velocity. And the analysis results show the fat that, besides the excellent stability of vehicle, the FA 4WS system is able to realize better handling performance of vehicle than the previous 4WS systems in the high speed region.

  • PDF

Development of Motion Control Camera Design Based on Wires with Anti-sway Method

  • Kim, Tae-Rim;Jung, Sung-Young;Baek, Gyeong-Dong;Kim, Sung-Shin
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.10 no.1
    • /
    • pp.25-30
    • /
    • 2010
  • This paper is proposed about three axis motion control camera design method based on wires. Original motion control camera consists of track, boom, L-Head, Camera and so on and is enormous and expensive. But proposed motion control camera adjusts wire length using encoders and motors. And position control use position based straight line of straight-line move method for moving precise position. Proposed simple design is able to use various place and inexpensive than original motion control camera. But, camera was vibrated and rotated due to basic property of wire. So we proposed solutions that connected method of wire and using a tensional object for reducing rotation. For proposed algorithm verification, we realized three axis motion control camera based on wire and measured oscillation while moving same trace. We confirmed the results that standard deviation of oscillation was reduced 4.93 degree than before design method.

Variable stability system control law development for in-flight simulation of pitch/roll/yaw rate and normal load

  • Ko, Joon Soo;Park, Sungsu
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.4
    • /
    • pp.412-418
    • /
    • 2014
  • This paper describes the development of variable stability system (VSS) control laws for the KFA-i to simulate the dynamics of KFA-m aircraft. The KFA-i is a single engine, Class IV aircraft and was selected as an in-flight simulator (IFS) aircraft, whereas the KFA-m is a simulated aircraft that is based on the F-16 aircraft. A 6-DoF math model of KFA-i aircraft was developed, linearized, and separated into longitudinal and lateral motion for VSS control law synthesis. The KFA-i aircraft has five primary control surfaces: two flaperons, two all movable horizontal tails, and one rudder. Flaperons are used for load control, the horizontal tails are used for pitch and roll rate control, and the rudder is used for yaw rate control. The developed VSS control law can simulate four parameters of the KFA-m aircraft simultaneously, such as pitch, roll, yaw rates, and load. The simulation results show that KFA-i follows the responses of KFA-m with high accuracy.