• 제목/요약/키워드: xylose reductase

검색결과 26건 처리시간 0.032초

Candida sp. BT001의 xylose reductase의 정제 및 성질 (Purification of xylose reductase from Candida sp. BT001 and characterization of its properties)

  • 황인균;이상협;이왕식;방원기
    • Applied Biological Chemistry
    • /
    • 제36권3호
    • /
    • pp.178-183
    • /
    • 1993
  • D-xylose의 통성 발효성 효모, Candida sp. BT001로부터 D-xylose를 xylitol로의 전환을 촉매하는 효소, xylose reductase(alditol: $MADP^+$ 1-oxidoreductase, EC 1.1.1.21)를 salt fractionation, ion exchange, gel filtration과 affinity chromatography를 거쳐 정제하여 그 성질을 조사하였다. 정제된 xylose reductase는 보효소 NADPH 및 NADH에 모두 특이성을 나타내었으며, 또한 각각의 보효소에 대해 활성을 지니는 효소는 따로 분리되지 않았다. Specific activity는 NADPH에 대해 11.78 U/mg, MADH에 대해 6.01 U/mg이었으며, NADH/NADPH의 활성비는 0.51이었다. 정제된 xylose reductase의 분자량은 SDS-PAGE상에서 31,000, gel filtration상에서 61,000으로 2개의 subunit로 구성된 효소로 추정하였다. 정제된 xylose reductase의 D-xylose와 NADPH 및 NADH에 대한 Km값은 각각 $94.2{\times}10^{-3}M,\;0.011{\times}10^{-3}M$$0.032{\times}10^{-3}M$ 이었다. Aldose들에 대한 xylose reductase의 활성은 L-arabinose, D-xylose순으로 높았다. 최적 효소 반응의 pH 및 반응 온도는 각각 6.2와 $45^{\circ}C$이었으며, 이 효소는 $30^{\circ}C$에서 20분간 안정하였다.

  • PDF

Effects of Xylose Reductase Activity on Xylitol Production in Two-Substrate Fermentation of Recombinant Saccharomyces cerevisiae

  • Lee, Woo-Jong;Kim, Myoung-Dong;Yoo, Myung-Sang;Ryu, Yeon-Woo;Seo, Jin-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • 제13권5호
    • /
    • pp.725-730
    • /
    • 2003
  • Three recombinant Saccharomyces cerevisiae strains showing different levels of xylose reductase activity were constructed to investigate the effects of xylose reductase activity and glucose feed rate on xylitol production. Conversion of xylose to xylitol is catalyzed by xylose reductase of Pichia stipitis with cofactor NAD(P)H. A two-substrate fermentation strategy has been employed where glucose is used as an energy source for NADPH regeneration and xylose as substrate for xylitol production. All recombinant S. cerevisiae strains Yielded similar specific xylitol productivity, indicating that xylitol production in the recombinant S. cerevisiae was more profoundly affected by the glucose supply and concomitant It generation of cofactor than the xylose reductase activity itself. It was confirmed in a continuous culture that the elevation of the glucose feeding level in the xylose-conversion period enhanced the xylitol productivity in the recombinant S. cerevisiae.

Conversion of Xylose to Ethanol by Recombinant Saccharomyces cerevisiae Containing Genes for Xylose Reductase and Xylose Reductase and xylitol Dehydrogenase from Pichia stipitis

  • Jin, Young-Su;Lee, Tae-Hee;Choi, Yang-Do;Ryu, Yeon-Woo;Seo, Jin-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • 제10권4호
    • /
    • pp.564-567
    • /
    • 2000
  • A recombinant Saccharomyces cerevisiae, transformed with the genes encoding xylose reductase (XYL1) and xylitol dehydrogenase (XYL2) orginated from Pichia stipitis CBS 5776, was developed to directly convert xylose to ethanol. A fed-batch fermentation with the recombinant yeast produced 8.7 g ethanol/l with a yield of 0.13 g ethanol/g xylose consumed.

  • PDF

Xylitol 생산에 최적화된 xylose reductase (GRE3)의 분비발현 시스템 (Secretory Expression System of Xylose Reductase (GRE3) for Optimal Production of Xylitol)

  • 정회명;김재운;김연희
    • 생명과학회지
    • /
    • 제26권12호
    • /
    • pp.1376-1382
    • /
    • 2016
  • Xylitol은 식품 및 의료산업에서 이용가치가 높은 물질로, lignocellulosic biomass인 xylose의 환원으로부터 생산되며, 대부분 유전적으로 안전한 Saccharomyces cerevisiae 균주를 사용하여 생산되고 있다. 따라서 본 연구에서는 S. cerevisiae에서 xylitol을 효율적으로 생산하기 위해 xylose reductase를 code하는 GRE3 (YHT104W)유전자의 발현시스템을 구축하여, xylose reductase의 분비생산 및 xylitol 생산성을 조사하고자 하였다. 먼저 GRE3 유전자의 발현에 적합한 promoter의 선별을 위해 GAL10 promoter와 ADH1 promoter 하류에 각각 mating factor ${\alpha}$ ($MF{\alpha}$) signal sequence와 GRE3 유전자를 가진 pGMF-GRE3와 pAMF-GRE3 plasmid를 구축하였다. 각각의 plasmid는 S. cerevisiae $SEY2102{\Delta}trp1$균주에 형질전환되었고, $SEY2102{\Delta}trp1$/pGMF-GRE3와 $SEY2102{\Delta}trp1$/pAMF-GRE3 형질전환주가 선별되었다. 그 중 $SEY2102{\Delta}trp1$/pGMF-GRE3 균주에서 NADPH를 cofactor로 사용했을 때 0.34 unit/mg-protein의 xylose reductase 활성(total activity)을 보였고, ADH1 promoter를 가진 $SEY2102{\Delta}trp1$/pAMF-GRE3 균주에 비해 1.5배 높은 활성증가를 확인 할 수 있었다. 또한 두 균주에서 모두 91%의 분비효율을 보여 대부분의 재조합 xylose reductase가 세포 밖으로 효율적으로 발현 분비되었음을 알 수 있었다. $SEY2102{\Delta}trp1$/pGMF-GRE3 균주를 사용한 baffled flask 배양에서 xylitol 생산량을 조사해 본 결과, 20 g/l의 xylose로부터 12.1 g/l의 xylitol을 생산하였고, 소모된 xylose의 약 83%정도가 xylitol로 환원되었음을 알 수 있었다.

Complete In Vitro Conversion of n-Xylose to Xylitol by Coupling Xylose Reductase and Formate Dehydrogenase

  • Jang, Sung-Hwan;Kang, Heui-Yun;Kim, Geun-Joong;Seo, Jin-Ho;Ryu, Yeon-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • 제13권4호
    • /
    • pp.501-508
    • /
    • 2003
  • Artificial coupling of one enzyme with another can provide an efficient means for the production of industrially important chemicals. Xylose reductase has been recently discovered to be useful in the reductive production of xylitol. However, a limitation of its in vitro or in vivo use is the regeneration of the cofactor NAD(P)H in the enzyme activity. In the present study, an efficient process for the production of xylitol from D-xylose was established by coupling two enzymes. A NADH-dependent xylose reductase (XR) from Pichia stipitis catalyzed the reduction of xylose with a stoichiometric consumption of NADH, and the resulting cofactor $NAD^+$ was continuously re-reduced by formate dehydrogenase (FDH) for regeneration. Using simple kinetic analyses as tools for process optimization, suitable conditions for the performance and yield of the coupled reaction were established. The optimal reaction temperature and pH were determined to be about $30^{\circ}C$ and 7.0, respectively. Formate, as a substrate of FDH, affected the yield and cofactor regeneration, and was, therefore, adjusted to a concentration of 20 mM. When the total activity of FDH was about 1.8-fold higher than that of XR, the performance was better than that by any other activity ratios. As expected, there were no distinct differences in the conversion yields of reactions, when supplied with the oxidized form $NAD^+$ instead of the reduced form NADH, as a starting cofactor for regeneration. Under these conditions, a complete conversion (>99%) could be readily obtained from a small-scale batch reaction.

Candida parapsilosis에 의한 Xylitol 생산시 Xylose와 Glucose가 미치는 영향 (Effect of Xylose and Glucose on Xylitol Production by Candida parapsilosis)

  • 오덕근;김상용
    • 한국식품과학회지
    • /
    • 제28권6호
    • /
    • pp.1151-1156
    • /
    • 1996
  • Candida parapsilosis KFCC-10875를 사용하여 xylose와 glucose가 xylitol 생산에 미치는 영향을 조사하였다. Xylose만 50 g/l 함유하는 배지에서 배양하면 xylitol만 생성되었고 xylose에 glucose를 첨가하여 배양하면 부산물로 ethanol과 glycerol이 생성되었다. Glucose 함량이 높을수록 xylitol 생성량은 감소하였지만 ethanol과 glycerol의 양은 증가하여 xylose 10 g/l와 glucose 40/l일 때 최대값 각각 21.5 /l, 3.6 g/l의 최대값을 나타내었다. Glucose에서는 xylitol이 생성되지 못하기 때문에 glucose만 존재하는 배지에서는 xylitol이 전혀 생성되지 않았다. Xylose에 대한 glucose의 비율을 증가시키며 배양한 결과 glucose 비율이 높을수록 이용된 xylose에 대한 생성된 xylitol의 수율이 감소하였다. 첨가하는 ethanol의 농도를 변화시키면서 배양한 결과 첨가된 ethanol의 농도가 증가할수록 xylose에 대한 생성된 xylitol의 생산이 감소하였고 부산물을 제거한 후 배양할 경우 xylitol생산이 저해되지 않았다. 이것은 xylose에 대한 생성된 xylitol의 수율이 ethanol가 같은 부산물에 의한 것이라는 것을 의미한다. Xylose 또는 glucose에서 성장한 균체를 약 20 g/l로 농축하여 xylose 50g/l가 포함된 발효배지에 접종하여 배양하였다. Glucose에서 성장한 균체를 사용한 xylitol 생산에서 xylose reductase와 xylitol dehydrogenase의 총역가는 농축균체를 사용하지 않는 일반 배양의 그것과 거의 비슷하였다. 그러나, xylose에서 성장한 농축균체를 사용한 발효에서의 xylose reductase의 역가와 xylitol dehydrogenase의 역가는 비교적 높게 나타나 일반배양의 역가와 비슷하였다. 그러므로 xylitol 생산성은 균체농도를 증가시킬수록 비례적으로 증가하여 xylose에서 성장한 농축균체로 발효시간 18시간에 50 g/l의 xylose로부터 40 g/l의 xylitol을 얻을 수 있었다.

  • PDF

Cloning of the Xylose Reductase Gene of Candida milleri

  • Sim, Hyoun-Soo;Park, Eun-Hee;Kwon, Se-Young;Choi, Sang-Ki;Lee, Su-Han;Kim, Myoung-Dong
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권7호
    • /
    • pp.984-992
    • /
    • 2013
  • The entire nucleotide sequence of the xylose reductase (XR) gene in Candida milleri CBS8195 sourdough yeast was determined by degenerate polymerase chain reaction (PCR) and genome walking. The sequence analysis revealed an open-reading frame of 981 bp that encoded 326 amino acids with a predicted molecular mass of 36.7 kDa. The deduced amino acid sequence of XR of C. milleri was 64.7% homologous to that of Kluyveromyces lactis. The cloned XR gene was expressed in Saccharomyces cerevisiae, and the resulting recombinant S. cerevisiae strain produced xylitol from xylose, indicating that the C. milleri XR introduced into S. cerevisiae is functional. An enzymatic activity assay and semiquantitative reverse transcription-PCR revealed that the expression of CmXR was induced by xylose. The GenBank Accession No. for CmXR is KC599203.

Characterization of two substrates fermentation processes for xylitol production using recombinant Saccharomyces cerevisiae containing xylose reductase gene

  • 이우종;유연우;서진호
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2000년도 춘계학술발표대회
    • /
    • pp.41-44
    • /
    • 2000
  • Fermentation characteristics of recombinant Saccharomyces cerevisiae containing the xylose reductase gene from Pichia stipitis were analyzed in an attempt to convert xylose to xylitol, a natural five-carbon sugar alcohol used as a sweetener. Xylitol was produced with a maximum yield of 0.95 (g xylitol/g xylose consumed) in the presence of glucose that is used as a cosubstrate for cofactor regeneration. However addition of glucose caused inhibition of xylose transport and accumulation of ethanol. Such problems were solved by adopting glucose-limlted fed-batch fermentation. This process done with S, cerevisiae EHl3.15:pY2XR at$30\;^{\circ}C$ resulted in 105.2g/L xylitol concentration with maximum productivity of 1.69 g $L^{-1}$ $hr^{-1}$.

  • PDF

High-Yield Production of Xylitol from Xylose by a Xylitol Dehydrogenase Defective Mutant of Pichia stipitis

  • Kim, Min-Soo;Chung, Yun-Seung;Seo, Jin-Ho;Jo, Do-Hyun;Park, Yun-Hee;Ryu, Yeon-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • 제11권4호
    • /
    • pp.564-569
    • /
    • 2001
  • This study was carried out in order to investigate the characteristics of xylitol fermentation by a xylitol dehydrogenase defective mutant PXM-4 of P stipitis CBS 5776 and to determime optimum conditions for the high yield ofxylitol production from xylose. Gluconic acid was selected as a co substrate for the xylitol fermentation, since gluconic acid neither blocked xylose transport nor repressed xylose reductase expression. An increase of gluconic acid concentration reduced the rates of xylitol production and cell growth by decreasing medium pH, and the optimal concentration of gluconic acid was determined to be 20 gll with approximately 100% xylitol conversion yield. A fed-batch cell culture resulted in a 44.8 g/l xylitol concentration with 100% yield, based on the amount of xylose consumed.

  • PDF

Electrochemical Reduction of Xylose to Xylitol by Whole Cells or Crude Enzyme of Candida peltata

  • Park Sun Mi;Sang Byung In;Park Dae Won;Park Doo Hyun
    • Journal of Microbiology
    • /
    • 제43권5호
    • /
    • pp.451-455
    • /
    • 2005
  • In this study, whole cells and a crude enzyme of Candida peltata were applied to an electrochemical bioreactor, in order to induce an increment of the reduction of xylose to xylitol. Neutral red was utilized as an electron mediator in the whole cell reactor, and a graphite-Mn(IV) electrode was used as a catalyst in the enzyme reactor in order to induce the electrochemical reduction of $NAD^+$ to NADH. The efficiency with which xylose was converted to xylitol in the electrochemical bioreactor was five times higher than that in the conventional bioreactor, when whole cells were employed as a biocatalyst. Meanwhile, the xylose to xylitol reduction efficiency in the enzyme reactor using the graphite-Mn (IV) electrode and $NAD^+$ was twice as high as that observed in the conventional bioreactor which utilized NADH as a reducing power. In order to use the graphite-Mn(IV) electrode as a catalyst for the reduction of $NAD^+$ to NADH, a bioelectrocatalyst was engineered, namely, oxidoreductase (e.g. xylose reductase). $NAD^+$ can function in this biotransformation procedure without any electron mediator or a second oxidoreductase for $NAD^+/NADH$ recycling