Browse > Article
http://dx.doi.org/10.5352/JLS.2016.26.12.1376

Secretory Expression System of Xylose Reductase (GRE3) for Optimal Production of Xylitol  

Jung, Hoe-Myung (Department of Smart-Biohealth, Dong-Eui University)
Kim, Jae-Woon (Department of Biotechnology and Bioengineering, Dong-Eui University)
Kim, Yeon-Hee (Department of Smart-Biohealth, Dong-Eui University)
Publication Information
Journal of Life Science / v.26, no.12, 2016 , pp. 1376-1382 More about this Journal
Abstract
Xylitol is widely used in the food and medical industry. It is produced by the reduction of xylose (lignocellulosic biomass) in the Saccharomyces cerevisiae strain, which is considered genetically safe. In this study, the expression system of the GRE3 (YHR104W) gene that encodes xylose reductase was constructed to efficiently produce xylitol in the S. cerevisiae strain, and the secretory production of xylose reductase was investigated. To select a suitable promoter for the expression of the GRE3 gene, pGMF-GRE3 and pAMF-GRE3 plasmid with GAL10 promoter and ADH1 promoter, respectively, were constructed. The mating factor ${\alpha}$ ($MF{\alpha}$) signal sequence was also connected to each promoter for secretory production. Each plasmid was transformed into S. cerevisiae $SEY2102{\Delta}trp1$, and $SEY2102{\Delta}trp1$/pGMF- GRE3 and $SEY2102{\Delta}trp1$/pAMF-GRE3 transformants were selected. In the $SEY2102{\Delta}trp1$/pGMF-GRE3 strain, the total activity of xylose reductase reached 0.34 unit/mg-protein when NADPH was used as a cofactor; this activity was 1.5 fold higher than that in $SEY2102{\Delta}trp1$/pAMF-GRE3 with ADH1 as the promoter. The secretion efficiency was 91% in both strains, indicating that most of the recombinant xylose reductase was efficiently secreted in the extracellular fraction. In a baffled flask culture of the $SEY2102{\Delta}trp1$/pGMF-GRE3 strain, 12.1 g/l of xylitol was produced from 20 g/l of xylose, and ~83% of the consumed xylose was reduced to xylitol.
Keywords
Promoter strength; Saccharomyces cerevisiae; secretion production; xylitol productivity; xylose reductase;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Bradford, M. M. 1976. Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254.   DOI
2 Clark, J. H. and Deswarte, F. 2011. Introduction to Chemicals from Biomass. pp. 344, John Wiley & Sons.
3 Chung, B. H., Nam, S. W., Kim, B. M. and Park, Y. H. 1996. Highly-dfficient secretion of heterologous protein from Saccharomyces cerevisiae using inulinase signal peptide. Biotechnol. Bioeng. 49, 473-479.
4 Ford, G. and Ellis, E. M. 2001. Three aldo-keto reductases of the yeast Saccharomyces cerevisiae. Chem. Biol. Interact 130, 685-698.
5 Garay-Arroyo, A. and Covarrubias, A. A. 1999. Three genes whose expression is induced by stress in Saccharomyces cerevisiae. Yeast 15, 879-892.   DOI
6 Gietz, R. D. and Schiestl, R. H. 1995. Transforming yeast with DNA. Methods Mol. Cell Biol. 5, 225-269.
7 Hacker, B., Habenicht, A., Kiess, M. and Mattes, R. 1999. Xylose utilization: Cloning and characterization of the xylose reductase from Candida tenuis. Biological. Chem. 380, 1395-1403.
8 Halborn, J., Walfridsson, M., Airaksinen, U., Ojamo, H., Hahnhagerdal, B., Penttila, M. and Keranen, S. 1991. Xylitol production by recombinant Saccharomyces cerevisiae. Bio Technol. 9, 1090-1095.   DOI
9 Hummon, A. B., Lim, S. R., Difilippantonio, M. J. and Ried, T. 2007. Isolation and solubilization of proteins after TRIZOL extraction of RNA and DNA from patient material following prolonged storage. BioTechniques 42, 467-472.   DOI
10 Jeong, E. Y., Sopher, C., Kim, I. S. and Lee, H. 2001. Mutational study of the role of tyrosine-49 in the Saccharomyces cerevisiae xylose reductase. Yeast 18, 1081-1089.   DOI
11 Jo, J. H., Oh, S. Y., Lee, H. S., Park, Y. C. and Seo, J. H. 2015. Dual utilization of NADPH and NADH cofactors enhances xylitol production in engineered Saccharomyces cerevisiae. Biotechnol. J. 10. 1935-1943.   DOI
12 Latchinian-Sadek, L. and Thomas, D. Y. 1993. Expression, purification, and characterization of the yeast KEX1 gene product, a polypeptide precursor processing carboxypeptidase. J. Biol. Chem. 268, 534-540.
13 Kang, H. A., Nam, S. W., Kwon, K. S., Chung, B. H. and Yu, M. H. 1996. High-level secretion of human ${\alpha}1$-antitrypsin form Saccharomyces cerevisiae using inulinase signal sequence. J. Biotechnol. 48, 15-24.   DOI
14 Kang, M. H., Ni, H. Y. and Jeffries, T. W. 2003. Molecular characterization of a gene for aldose reductase (CbXYL1) from Candida boidinii and its expression in Saccharomyces cerevisiae. Appl. Biochem. Biotechnol. 105. 265-276.
15 Kim, M. J., Kim, B. H., Nam, S. W., Choi, E. S., Shin, D. H., Cho, H. Y., Son, K. H., Park, H. Y. and Kim, Y. H. 2013. Efficient secretory expression of recombinant endoxylanase from Bacillus sp. HY-20 in Saccharomyces cerevisiae. J. Life Sci. 23, 863-868.   DOI
16 Kim, M. J., Nam, S. W., Tamano, K., Machida, M., Kim, S. K. and Kim, Y. H. 2011. Optimization for production of exo-${\beta}$-1,3-glucanase (laminarinase) from Aspergillus oryzae in Saccharomyces cerevisiae. Kor. J. Microbiol. Biotechnol. 26, 427-432.
17 Kim, S. R., Kwee, N. R., Kim, H. J. and Jin, Y. S. 2013. Feasibility of xylose fermentation by engineered Saccharomyces cerevisiae overexpressing endogenous aldose reductase (GRE3), xylitol dehydrogenase (XYL2), and xylulokinase (XYL3) from Scheffersomyces stipitis. FEMS Yeast Res. 13, 312-321.   DOI
18 Lim, C. K., Kim, Y. K., Kim, K. H., Kim, C. H., Rhee, S. K. and Nam, S. W. 2004. Expression and secretion of Zymononas mobilis levansucrase in Saccharomyces cerevisiae. J. Life Sci. 14, 429-434.   DOI
19 Makinen, K. K. 2011. Sugar alcohol sweeteners as alternatives to sugar with special consideration of xylitol. Med. Princ. Pract. 20, 303-320.   DOI
20 Mattam, A. J., Kuila, A., Suralikerimath, N., Choudary, N., Rao, P. V. and Velankar, H. R. 2016. Cellulolytic enzyme expression and simultaneous conversion of lignocellulosic sugars into ethanol and xylitol by a new Candida tropicalis strain. Biotechnol. Biofuels 9, 157-169.   DOI
21 Wisniak, J., Hershkowitz, M., Leibowitz, R. and Stein, S. 1974. Hydrogenation of xylose to xylitol. Ind. Eng. Chem. Res. 13, 75-79.   DOI
22 Nidetzky, B., Neuhauser, W., Haltrich, D. and Kulbe, K. D. 1996. Continuous enzymatic production of xylitol with simultaneous coenzyme regeneration in a charged membrane reactor. Biotechnol. Bioeng. 52. 387-396.
23 Park, E., Park, M. H., Na, H. S. and Chung, J. 2015. Xylitol induces cell death in lung cancer A549 cells by autophagy. Biotechnol. Lett. 37, 983-990.   DOI
24 Vernet, T., Dignard, D. and Thomas, D. Y. 1987. A family of yeast expression vectors containing the phage f1 intergenic region. Gene 52, 225-233.   DOI
25 Yadav, M., Mishra, D. K. and Hwang, J. S. 2012. Catalytic hydrogenation of xylose to xylitol using ruthenium catalyst on NiO modified TiO2 support. Appl. Catal., A 425, 110-116.