Electrochemical Reduction of Xylose to Xylitol by Whole Cells or Crude Enzyme of Candida peltata |
Park Sun Mi
(Department of Biological Engineering, Seokyeong University)
Sang Byung In (Division of Water Environment and Remediation, KIST) Park Dae Won (Department of Energy and Environmental Engineering, Seoul National University of Technology) Park Doo Hyun (Department of Biological Engineering, Seokyeong University) |
1 | Alverez-Gonzales, M.I., S.B.l. Saidman, M.J. Lobo-Castanon, A.J. Miranda-Ordiere, and P. Tunon-Blanco. 2000. Electrocatalytic detection of NADH and glycerol by -modified carbon electrodes. Anal. Chem. 72, 520-527 DOI ScienceOn |
2 | Chenault, K.K. and G.M. Whitesdies. 1987. Regeneraion of nicotinamide cofactors for used in organic synthesis. Appl. Biochem. Biotechnol. 14, 147-149 DOI ScienceOn |
3 | Katz, E., I. Willner, and A.B. Kotlyar. 1999. A non-compartmentalized glucose/O2 biofuel cell by bioengineered electrode sufaces. J. Electroanal. Chem. 479, 64-68 DOI ScienceOn |
4 | Kim, K.H. and H.M. Park. 2004. Enhanced secretion of cell wall bound enolase into culture medium by the sooj-1 mutation of Saccharomyces cerevisiae. J. Microbiol. 42, 248-252 |
5 | Miyawaki, D. and T. Yano. 1993. Electrochemical bioreactor with immobilized glucose-6-phosphate dehydrogenase on the rotation graphite disc electrode modified with phenazine methosulfate. Enzyme Microbiol. Technol. 15, 525-529 DOI ScienceOn |
6 | Thestrup, H.N. and B.H. Hagerdal. 1995. Xylitol formation and reduction equivalent generation during anaerobic xylose conversion with glucose as cosubstrate in recombinant Saccharomyces cerevisiae expressing the xyl1 gene. Appl. Environ. Microbiol. 61, 2043-2045 PUBMED |
7 | Shin, I.H., S.J. Jeon, H.S. Park, and D.H. Park. 2004. Catalytic oxidoreduction of pyruvate/lactate and acetaldehyde/ethanol coupled to electrochemical oxidoreduction of NAD+/NADH. J. Microbiol. Biotechnol. 14, 540-546 |
8 | Kim, H.G., B.C. Kim, K.H. Kim, E.H. Park, and C.J. Lim. 2004. Tanscriptional regulation of the Shizosaccharomyces pombe gene encoding glutathione S-transferase I by a transcription factor PaP1. J. Microbiol. 42, 353-356 |
9 | Lee, W.J., Y.W. Ryu, and J.H. Seo. 2000. Characterization of two- -substrate fermentation processes for xylitol production using recombinant Saccharomyces cerevisiae containing xylose reductase. J. Microbiol. Biotechnol. 35, 1199-1203 |
10 | Cha, J.Y., J.C. Park, B.S. Jeon, Y.C. Lee, and Y.S. Cho. 2004. Optimal fermentation conditions for enhanced glutathione production by Saccharomyces cerevisiae FF-8. J. Microbiol. 42, 51-55 |
11 | Park, D.H. and J.G. Zeikus. 2000. Electricity generation in microbial fuel cells using neutral red and an electronophore. Appl. Environ. Microbiol. 66, 1292-1297 DOI ScienceOn |
12 | Park, D.H. and J.G. Zeikus. 2002. Impact of electrode composition on electricity generation in a single-compartment fuel cell using Shewanella putrefaciens. Appl. Microbial. Biotechnol. 59, 58-61 DOI ScienceOn |
13 | Chen, T., S. Calabress Barton, G. Binyamin, Z. Gao, Y. Zhang, H.- H. Kim, and A. Heller. 2001. A miniature biofuel cell. J. Am. Chem. Soc. 123, 630-8631 |
14 | Carlile, M.J., S.C. Watkinson, and G.W. Gooday. 2001. Fungal cells and vegetative growth, pp 85-184 in The Fungi. Academic press, New York, New York |
15 | Lee, W.J., M.D. Kim, M.S. Yoo, Y.W. Ryu, and J.H. Seo. 2003. Effect of xylose reductase activity on xylitol production in twosubstrate fermentation of recombinant Saccharomyces cerevisiae. J. Microbiol. Biotechnol. 13, 725-730 |
16 | Fang, J.M. and C.H. Lin. 1995. nucleic acids using pulsed EPR spectroscopy. J. Am.Chem. Soc. 124: 834-842 DOI ScienceOn |
17 | Webb, S.R. and H. Lee. 1991. Inhibition of xylose reductase from the yeast Pichia stipitis. Appl. Biochem. Biotechnol. 30, 325- 337 DOI |
18 | Krage, U., W. Kruse, and W. Wandrey. 1996. Enzyme engineering aspects of biocatalysis: Cofactor regeneration as example. Biotechnol. Bioeng. 52, 309-319 DOI ScienceOn |
19 | Park, D.H. and J. G. Zeikus. 1999. Utilization of electrically reduced neutral red by Actinobacillus succinogenes: Physiological function of neutral red in membrane-driven fumarate reduction and energy generation. J. Bacteriol. 181, 2403-2410 PUBMED |
20 | Munteanu, F.D., L.T. Kubota, and L.Gorton. 2001. Effect of pH on the catalytic electrooxidation of NADH using different electron mediators immobilized on zirconium phosphate. J. Electroanal. Chem. 509, 2-100 DOI ScienceOn |
21 | Fang, J.M. and C.H. Lin. 1995. Enzymes in organic synthesis: Oxidoreductions. J. Chem. Soc. Perkin Trans. 1, 967-978 |
22 | Wong, C.H. and G.M. Whitesides. 1994. Enzymes in synthetic organic chemistry, Elsevier Science Ltd., Oxford |
23 | Jang, S.H., H.Y. Kang, G.J. Kim, J.H. Seo, and Y.W. Ryu. 2003. Complete in vitro conversion of D-xylose to xylitol by coupling xylose reductase and formate dehydrogenase. J. Microbiol. Biotechnol. 13, 501-508 |
24 | Shin, H.S., M.K. Jain, and J.G. Zeikus. 2001. Evaluation of the electrochemical bioreactor system in biotransformation of -tetralone to -tetralol. Appl. Microbiol. Biotechnol. 57, 506-510 DOI ScienceOn |