Browse > Article
http://dx.doi.org/10.4014/jmb.1305.05012

Cloning of the Xylose Reductase Gene of Candida milleri  

Sim, Hyoun-Soo (Department of Food Science and Biotechnology, Kangwon National University)
Park, Eun-Hee (Department of Food Science and Biotechnology, Kangwon National University)
Kwon, Se-Young (Department of Food Science and Biotechnology, Kangwon National University)
Choi, Sang-Ki (Department of Food Science and Biotechnology, Kangwon National University)
Lee, Su-Han (Department of Food Technology and Service, Eulji University)
Kim, Myoung-Dong (Department of Food Science and Biotechnology, Kangwon National University)
Publication Information
Journal of Microbiology and Biotechnology / v.23, no.7, 2013 , pp. 984-992 More about this Journal
Abstract
The entire nucleotide sequence of the xylose reductase (XR) gene in Candida milleri CBS8195 sourdough yeast was determined by degenerate polymerase chain reaction (PCR) and genome walking. The sequence analysis revealed an open-reading frame of 981 bp that encoded 326 amino acids with a predicted molecular mass of 36.7 kDa. The deduced amino acid sequence of XR of C. milleri was 64.7% homologous to that of Kluyveromyces lactis. The cloned XR gene was expressed in Saccharomyces cerevisiae, and the resulting recombinant S. cerevisiae strain produced xylitol from xylose, indicating that the C. milleri XR introduced into S. cerevisiae is functional. An enzymatic activity assay and semiquantitative reverse transcription-PCR revealed that the expression of CmXR was induced by xylose. The GenBank Accession No. for CmXR is KC599203.
Keywords
Candida milleri; xylose reductase; xylitol; degenerate PCR; genome walking;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Washuttl J, Rieder P, Bancher E. 1973. A qualitative and quantitative study of sugar alcohols in several foods. J. Food Sci. 38: 1262-1263.   DOI
2 Zhang B, Zhang L, Wang D, Gao X, Hong J. 2011. Identification of a xylose reductase gene in the xylose metabolic pathway of Kluyveromyces marxianus NBRC1777. J. Ind. Microbiol. Biotechnol. 38: 2001-2010.   DOI   ScienceOn
3 Bengtsson O, Hahn-Hagerdal B, Gorwa-Grauslund MF. 2009. Xylose reductase from Pichia stipitis with altered coenzyme preference improves ethanolic xylose fermentation by recombinant Saccharomyces cerevisiae. Biotechnol. Biofuels 2: 9.   DOI   ScienceOn
4 Akinterinwa O, Khankal R, Cirino PC. 2008. Metabolic engineering for bioproduction of sugar alcohols. Curr. Opin. Biotechnol. 19: 461-467.   DOI   ScienceOn
5 Amore R, Kotter P, Kuster C, Ciriacy M, Hollenberg CP. 1991. Cloning and expression in Saccharomyces cerevisiae of the NAD(P)H-dependent xylose reductase-encoding gene (XYL1) from the xylose-assimilating yeast Pichia stipitis. Gene 109: 89-97.   DOI   ScienceOn
6 Belazzi T, Wagner A, Wieser R, Schanz M, Adam G, Hartig A, et al. 1991. Negative regulation of transcription of the Saccharomyces cerevisiae catalase T (CTT1) gene by cAMP is mediated by a positive control element. EMBO J. 10: 585-592.
7 Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, Higgins DG, et al. 2003. Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res. 31: 3497-3500.   DOI   ScienceOn
8 Bicho PA, Runnals PL, Cunningham JD, Lee H. 1988. Induction of xylose reductase and xylitol dehydrogenase activities in Pachysolen tannophilus and Pichia stipitis on mixed sugars. Appl. Environ. Microbiol. 54: 50-54.
9 Boneau CA. 1960. The effects of violations of assumptions underlying the t test. Psychol. Bull. 57: 49-64.   DOI   ScienceOn
10 Bruinenberg PM, van Dijken JP, Scheffers WA. 1983. An enzymic analysis of NADPH production and consumption in Candida utilis. J. Gen. Microbiol. 129: 965-971.
11 Govinden R, Pillay B, van Zyl WH, Pillay D. 2001. Xylitol production by recombinant Saccharomyces cerevisiae expressing the Pichia stipitis and Candida shehatae XYL1 genes. Appl. Microbiol. Biotechnol. 55: 76-80.   DOI   ScienceOn
12 Fernandes S, Tuohy MG, Murray PG. 2009. Xylose reductase from the thermophilic fungus Talaromyces emersonii: Cloning and heterologous expression of the native gene (Texr) and a double mutant ($TexrK^{271R+N273D}$) with altered coenzyme specificity. J. Biosci. Bioeng. 34: 881-890.   DOI
13 Garay-Arroyo A, Covarrubias AA. 1999. Three genes whose expression is induced by stress in Saccharomyces cerevisiae. Yeast 15: 879-892.   DOI   ScienceOn
14 Gietz RD, Woods RA. 2002. Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol. 350: 87-96.   DOI
15 Granstrom TB, Aristidou AA, Jokela J, Leisola M. 2000. Growth characteristics and metabolic flux analysis of Candida milleri. Biotechnol. Bioeng. 70: 197-207.   DOI   ScienceOn
16 Hacker B, Habenicht A, Kiess M, Mattes R. 1999. Xylose utilisation: Cloning and characterisation of the xylose reductase from Candida tenuis. Biol. Chem. 380: 1395-1403.
17 Heidmann S, Schindewolf C, Stumpf G, Domdey H. 1994. Flexibility and interchangeability of polyadenylation signals in Saccharomyces cerevisiae. Mol. Cell. Biol. 14: 4633-4642.
18 Hallborn J, Walfridsson M, Airaksinen U, Ojamo H, Hahn-Hagerdal B, Penttila M, et al. 1991. Xylitol production by recombinant Saccharomyces cerevisiae. Biotechnology 9: 1090-1095.   DOI   ScienceOn
19 Handumrongkul C, Ma D-P, Silva JL. 1998. Cloning and expression of Candida guilliermondii xylose reductase gene (xyl1) in Pichia pastoris. Appl. Microbiol. Biotechnol. 49: 399-404.   DOI
20 Jeong EY, Sopher C, Kim IS, Lee H. 2001. Mutational study of the role of tyrosine-49 in the Saccharomyces cerevisiae xylose reductase. Yeast 18: 1081-1089.   DOI   ScienceOn
21 Ho NW, Lin FP, Huang S, Andrews PC, Tsao GT. 1990. Purification, characterization, and amino terminal sequence of xylose reductase from Candida shehatae. Enzyme Microb. Technol. 12: 33-39.   DOI   ScienceOn
22 Hou J, Vemuri GN, Bao X, Olsson L. 2009. Impact of overexpressing NADH kinase on glucose and xylose metabolism in recombinant xylose-utilizing Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 82: 909-919.   DOI
23 Kang MH, Ni H, Jeffries TW. 2003. Molecular characterization of a gene for aldose reductase (CbXYL1) from Candida boidinii and its expression in Saccharomyces cerevisiae. Appl. Biochem. Biotechnol. 105-108: 265-276.
24 Kavanagh KL, Klimacek M, Nidetzky B, Wilson DK. 2003. Structure of xylose reductase bound to NAD+ and the basis for single and dual co-substrate specificity in family 2 aldoketo reductases. Biochem. J. 373: 319-326.   DOI   ScienceOn
25 Kim JH, Han KC, Koh YH, Ryu YW, Seo JH. 2002. Optimization of fed-batch fermentation for xylitol production by Candida tropicalis. J. Ind. Microbiol. Biotechnol. 29: 16-19.   DOI   ScienceOn
26 Kobayashi N, McEntee K. 1993. Identification of cis and trans components of a novel heat shock stress regulatory pathway in Saccharomyces cerevisiae. Mol. Cell. Biol. 13: 248-256.
27 Liaw WC, Chen CS, Chang WS, Chen KP. 2008. Xylitol production from rice straw hemicellulose hydrolyzate by polyacrylic hydrogel thin films with immobilized Candida subtropicalis WF79. J. Biosci. Bioeng. 105: 97-105.
28 Marchler G, Schuller C, Adam G, Ruis H. 1993. A Saccharomyces cerevisiae UAS element controlled by protein kinase A activates transcription in response to a variety of stress conditions. EMBO J. 12: 1997-2003.
29 Lee JK, Koo BS, Kim SY. 2003. Cloning and characterization of the xyl1 gene, encoding an NADH-preferring xylose reductase from Candida parapsilosis, and its functional expression in Candida tropicalis. Appl. Environ. Microbiol. 69: 6179-6188.   DOI   ScienceOn
30 Lee SH, Kodaki T, Park YC, Seo JH. 2012. Effects of NADHpreferring xylose reductase expression on ethanol production from xylose in xylose-metabolizing recombinant Saccharomyces cerevisiae. J. Biotechnol. 158: 184-191.   DOI   ScienceOn
31 Mattila PT, Svanberg MJ, Makinen KK, Knuuttila ML. 1996. Dietary xylitol, sorbitol and D-mannitol but not erythritol retard bone resorption in rats. J. Nutr. 126: 1865-1870.
32 Meinander NQ, Hahn-Hagerdal B. 1997. Influence of cosubstrate concentration on xylose conversion by recombinant, XYL1-expressing Saccharomyces cerevisiae: A comparison of different sugars and ethanol as cosubstrates. Appl. Environ. Microbiol. 63: 1959-1964.
33 Metzger MH, Hollenberg CP. 1995. Amino acid substitutions in the yeast Pichia stipitis xylitol dehydrogenase coenzymebinding domain affect the coenzyme specificity. Eur. J. Biochem. 228: 50-54.   DOI   ScienceOn
34 Mumberg D, Muller R, Funk M. 1995. Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene 156: 119-122.   DOI   ScienceOn
35 Persson B, Krook M, Jornvall H. 1995. Short-chain dehydrogenases/reductases (SDRs). Adv. Exp. Med. Biol. 372: 383-395.   DOI
36 Nigam P, Singh D. 1995. Processes for fermentative production of xylitol - a sugar substitute. Process Biochem. 30: 117-127.
37 Ruis H, Schuller C. 1995. Stress signaling in yeast. Bioessays 17: 959-965.   DOI   ScienceOn
38 Park EH, Kwun SY, Han SA, Lee JS, Kim MD. 2012. Cloning and functional verification of the Candida milleri HIS3 gene encoding imidazole glycerol phosphate dehydratase. J. Microbiol. Biotechnol. 22: 1441-1445.   DOI   ScienceOn
39 Park EH, Seo JH, Kim MD. 2012. Cloning and characterization of the orotidine-5'-phosphate decarboxylase gene (URA3) from the osmotolerant yeast Candida magnoliae. J. Microbiol. Biotechnol. 22: 642-648.   DOI   ScienceOn
40 Petschacher B, Nidetzky B. 2008. Altering the coenzyme preference of xylose reductase to favor utilization of NADH enhances ethanol yield from xylose in a metabolically engineered strain of Saccharomyces cerevisiae. Microb. Cell Fact. 7: 9.   DOI   ScienceOn
41 Sambrook J, Russell DW. 2011. Molecular Cloning, pp. 1.119-111.122. Cold Spring Harbor Laboratory Press, New York.
42 Watanabe S, Abu Saleh A, Pack SP, Annaluru N, Kodaki T, Makino K. 2007. Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing proteinengineered NADH-preferring xylose reductase from Pichia stipitis. Microbiology 153: 3044-3054.   DOI   ScienceOn
43 Soderling E, Isokangas P, Tenovuo J, Mustakallio S, Makinen KK. 1991. Long-term xylitol consumption and mutans streptococci in plaque and saliva. Caries Res. 25: 153-157.   DOI   ScienceOn
44 Takuma S, Nakashima N, Tantirungkij M, Kinoshita S, Okada H, Seki T, et al. 1991. Isolation of xylose reductase gene of Pichia stipitis and its expression in Saccharomyces cerevisiae. Appl. Biochem. Biotechnol. 28-29: 327-340.   DOI
45 Traff-Bjerre KL, Jeppsson M, Hahn-Hagerdal B, Gorwa-Grauslund MF. 2004. Endogenous NADPH-dependent aldose reductase activity influences product formation during xylose consumption in recombinant Saccharomyces cerevisiae. Yeast 21: 141-150.   DOI   ScienceOn
46 Verho R, Londesborough J, Penttila M, Richard P. 2003. Engineering redox cofactor regeneration for improved pentose fermentation in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 69: 5892-5897.   DOI   ScienceOn