DOI QR코드

DOI QR Code

Cloning of the Xylose Reductase Gene of Candida milleri

  • Sim, Hyoun-Soo (Department of Food Science and Biotechnology, Kangwon National University) ;
  • Park, Eun-Hee (Department of Food Science and Biotechnology, Kangwon National University) ;
  • Kwon, Se-Young (Department of Food Science and Biotechnology, Kangwon National University) ;
  • Choi, Sang-Ki (Department of Food Science and Biotechnology, Kangwon National University) ;
  • Lee, Su-Han (Department of Food Technology and Service, Eulji University) ;
  • Kim, Myoung-Dong (Department of Food Science and Biotechnology, Kangwon National University)
  • Received : 2013.05.07
  • Accepted : 2013.05.12
  • Published : 2013.07.28

Abstract

The entire nucleotide sequence of the xylose reductase (XR) gene in Candida milleri CBS8195 sourdough yeast was determined by degenerate polymerase chain reaction (PCR) and genome walking. The sequence analysis revealed an open-reading frame of 981 bp that encoded 326 amino acids with a predicted molecular mass of 36.7 kDa. The deduced amino acid sequence of XR of C. milleri was 64.7% homologous to that of Kluyveromyces lactis. The cloned XR gene was expressed in Saccharomyces cerevisiae, and the resulting recombinant S. cerevisiae strain produced xylitol from xylose, indicating that the C. milleri XR introduced into S. cerevisiae is functional. An enzymatic activity assay and semiquantitative reverse transcription-PCR revealed that the expression of CmXR was induced by xylose. The GenBank Accession No. for CmXR is KC599203.

Keywords

References

  1. Akinterinwa O, Khankal R, Cirino PC. 2008. Metabolic engineering for bioproduction of sugar alcohols. Curr. Opin. Biotechnol. 19: 461-467. https://doi.org/10.1016/j.copbio.2008.08.002
  2. Amore R, Kotter P, Kuster C, Ciriacy M, Hollenberg CP. 1991. Cloning and expression in Saccharomyces cerevisiae of the NAD(P)H-dependent xylose reductase-encoding gene (XYL1) from the xylose-assimilating yeast Pichia stipitis. Gene 109: 89-97. https://doi.org/10.1016/0378-1119(91)90592-Y
  3. Belazzi T, Wagner A, Wieser R, Schanz M, Adam G, Hartig A, et al. 1991. Negative regulation of transcription of the Saccharomyces cerevisiae catalase T (CTT1) gene by cAMP is mediated by a positive control element. EMBO J. 10: 585-592.
  4. Bengtsson O, Hahn-Hagerdal B, Gorwa-Grauslund MF. 2009. Xylose reductase from Pichia stipitis with altered coenzyme preference improves ethanolic xylose fermentation by recombinant Saccharomyces cerevisiae. Biotechnol. Biofuels 2: 9. https://doi.org/10.1186/1754-6834-2-9
  5. Bicho PA, Runnals PL, Cunningham JD, Lee H. 1988. Induction of xylose reductase and xylitol dehydrogenase activities in Pachysolen tannophilus and Pichia stipitis on mixed sugars. Appl. Environ. Microbiol. 54: 50-54.
  6. Boneau CA. 1960. The effects of violations of assumptions underlying the t test. Psychol. Bull. 57: 49-64. https://doi.org/10.1037/h0041412
  7. Bruinenberg PM, van Dijken JP, Scheffers WA. 1983. An enzymic analysis of NADPH production and consumption in Candida utilis. J. Gen. Microbiol. 129: 965-971.
  8. Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, Higgins DG, et al. 2003. Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res. 31: 3497-3500. https://doi.org/10.1093/nar/gkg500
  9. Fernandes S, Tuohy MG, Murray PG. 2009. Xylose reductase from the thermophilic fungus Talaromyces emersonii: Cloning and heterologous expression of the native gene (Texr) and a double mutant ($TexrK^{271R+N273D}$) with altered coenzyme specificity. J. Biosci. Bioeng. 34: 881-890. https://doi.org/10.1007/s12038-009-0102-7
  10. Garay-Arroyo A, Covarrubias AA. 1999. Three genes whose expression is induced by stress in Saccharomyces cerevisiae. Yeast 15: 879-892. https://doi.org/10.1002/(SICI)1097-0061(199907)15:10A<879::AID-YEA428>3.0.CO;2-Q
  11. Gietz RD, Woods RA. 2002. Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol. 350: 87-96. https://doi.org/10.1016/S0076-6879(02)50957-5
  12. Govinden R, Pillay B, van Zyl WH, Pillay D. 2001. Xylitol production by recombinant Saccharomyces cerevisiae expressing the Pichia stipitis and Candida shehatae XYL1 genes. Appl. Microbiol. Biotechnol. 55: 76-80. https://doi.org/10.1007/s002530000455
  13. Granstrom TB, Aristidou AA, Jokela J, Leisola M. 2000. Growth characteristics and metabolic flux analysis of Candida milleri. Biotechnol. Bioeng. 70: 197-207. https://doi.org/10.1002/1097-0290(20001020)70:2<197::AID-BIT9>3.0.CO;2-D
  14. Hacker B, Habenicht A, Kiess M, Mattes R. 1999. Xylose utilisation: Cloning and characterisation of the xylose reductase from Candida tenuis. Biol. Chem. 380: 1395-1403.
  15. Hallborn J, Walfridsson M, Airaksinen U, Ojamo H, Hahn-Hagerdal B, Penttila M, et al. 1991. Xylitol production by recombinant Saccharomyces cerevisiae. Biotechnology 9: 1090-1095. https://doi.org/10.1038/nbt1191-1090
  16. Handumrongkul C, Ma D-P, Silva JL. 1998. Cloning and expression of Candida guilliermondii xylose reductase gene (xyl1) in Pichia pastoris. Appl. Microbiol. Biotechnol. 49: 399-404. https://doi.org/10.1007/s002530051189
  17. Heidmann S, Schindewolf C, Stumpf G, Domdey H. 1994. Flexibility and interchangeability of polyadenylation signals in Saccharomyces cerevisiae. Mol. Cell. Biol. 14: 4633-4642.
  18. Ho NW, Lin FP, Huang S, Andrews PC, Tsao GT. 1990. Purification, characterization, and amino terminal sequence of xylose reductase from Candida shehatae. Enzyme Microb. Technol. 12: 33-39. https://doi.org/10.1016/0141-0229(90)90177-R
  19. Hou J, Vemuri GN, Bao X, Olsson L. 2009. Impact of overexpressing NADH kinase on glucose and xylose metabolism in recombinant xylose-utilizing Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 82: 909-919. https://doi.org/10.1007/s00253-009-1900-4
  20. Jeong EY, Sopher C, Kim IS, Lee H. 2001. Mutational study of the role of tyrosine-49 in the Saccharomyces cerevisiae xylose reductase. Yeast 18: 1081-1089. https://doi.org/10.1002/yea.758
  21. Kang MH, Ni H, Jeffries TW. 2003. Molecular characterization of a gene for aldose reductase (CbXYL1) from Candida boidinii and its expression in Saccharomyces cerevisiae. Appl. Biochem. Biotechnol. 105-108: 265-276.
  22. Kavanagh KL, Klimacek M, Nidetzky B, Wilson DK. 2003. Structure of xylose reductase bound to NAD+ and the basis for single and dual co-substrate specificity in family 2 aldoketo reductases. Biochem. J. 373: 319-326. https://doi.org/10.1042/BJ20030286
  23. Kim JH, Han KC, Koh YH, Ryu YW, Seo JH. 2002. Optimization of fed-batch fermentation for xylitol production by Candida tropicalis. J. Ind. Microbiol. Biotechnol. 29: 16-19. https://doi.org/10.1038/sj.jim.7000257
  24. Kobayashi N, McEntee K. 1993. Identification of cis and trans components of a novel heat shock stress regulatory pathway in Saccharomyces cerevisiae. Mol. Cell. Biol. 13: 248-256.
  25. Lee JK, Koo BS, Kim SY. 2003. Cloning and characterization of the xyl1 gene, encoding an NADH-preferring xylose reductase from Candida parapsilosis, and its functional expression in Candida tropicalis. Appl. Environ. Microbiol. 69: 6179-6188. https://doi.org/10.1128/AEM.69.10.6179-6188.2003
  26. Lee SH, Kodaki T, Park YC, Seo JH. 2012. Effects of NADHpreferring xylose reductase expression on ethanol production from xylose in xylose-metabolizing recombinant Saccharomyces cerevisiae. J. Biotechnol. 158: 184-191. https://doi.org/10.1016/j.jbiotec.2011.06.005
  27. Liaw WC, Chen CS, Chang WS, Chen KP. 2008. Xylitol production from rice straw hemicellulose hydrolyzate by polyacrylic hydrogel thin films with immobilized Candida subtropicalis WF79. J. Biosci. Bioeng. 105: 97-105.
  28. Marchler G, Schuller C, Adam G, Ruis H. 1993. A Saccharomyces cerevisiae UAS element controlled by protein kinase A activates transcription in response to a variety of stress conditions. EMBO J. 12: 1997-2003.
  29. Mattila PT, Svanberg MJ, Makinen KK, Knuuttila ML. 1996. Dietary xylitol, sorbitol and D-mannitol but not erythritol retard bone resorption in rats. J. Nutr. 126: 1865-1870.
  30. Meinander NQ, Hahn-Hagerdal B. 1997. Influence of cosubstrate concentration on xylose conversion by recombinant, XYL1-expressing Saccharomyces cerevisiae: A comparison of different sugars and ethanol as cosubstrates. Appl. Environ. Microbiol. 63: 1959-1964.
  31. Metzger MH, Hollenberg CP. 1995. Amino acid substitutions in the yeast Pichia stipitis xylitol dehydrogenase coenzymebinding domain affect the coenzyme specificity. Eur. J. Biochem. 228: 50-54. https://doi.org/10.1111/j.1432-1033.1995.tb20227.x
  32. Mumberg D, Muller R, Funk M. 1995. Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene 156: 119-122. https://doi.org/10.1016/0378-1119(95)00037-7
  33. Nigam P, Singh D. 1995. Processes for fermentative production of xylitol - a sugar substitute. Process Biochem. 30: 117-127.
  34. Park EH, Kwun SY, Han SA, Lee JS, Kim MD. 2012. Cloning and functional verification of the Candida milleri HIS3 gene encoding imidazole glycerol phosphate dehydratase. J. Microbiol. Biotechnol. 22: 1441-1445. https://doi.org/10.4014/jmb.1207.07064
  35. Park EH, Seo JH, Kim MD. 2012. Cloning and characterization of the orotidine-5'-phosphate decarboxylase gene (URA3) from the osmotolerant yeast Candida magnoliae. J. Microbiol. Biotechnol. 22: 642-648. https://doi.org/10.4014/jmb.1111.11071
  36. Persson B, Krook M, Jornvall H. 1995. Short-chain dehydrogenases/reductases (SDRs). Adv. Exp. Med. Biol. 372: 383-395. https://doi.org/10.1007/978-1-4615-1965-2_46
  37. Petschacher B, Nidetzky B. 2008. Altering the coenzyme preference of xylose reductase to favor utilization of NADH enhances ethanol yield from xylose in a metabolically engineered strain of Saccharomyces cerevisiae. Microb. Cell Fact. 7: 9. https://doi.org/10.1186/1475-2859-7-9
  38. Ruis H, Schuller C. 1995. Stress signaling in yeast. Bioessays 17: 959-965. https://doi.org/10.1002/bies.950171109
  39. Sambrook J, Russell DW. 2011. Molecular Cloning, pp. 1.119-111.122. Cold Spring Harbor Laboratory Press, New York.
  40. Soderling E, Isokangas P, Tenovuo J, Mustakallio S, Makinen KK. 1991. Long-term xylitol consumption and mutans streptococci in plaque and saliva. Caries Res. 25: 153-157. https://doi.org/10.1159/000261359
  41. Takuma S, Nakashima N, Tantirungkij M, Kinoshita S, Okada H, Seki T, et al. 1991. Isolation of xylose reductase gene of Pichia stipitis and its expression in Saccharomyces cerevisiae. Appl. Biochem. Biotechnol. 28-29: 327-340. https://doi.org/10.1007/BF02922612
  42. Traff-Bjerre KL, Jeppsson M, Hahn-Hagerdal B, Gorwa-Grauslund MF. 2004. Endogenous NADPH-dependent aldose reductase activity influences product formation during xylose consumption in recombinant Saccharomyces cerevisiae. Yeast 21: 141-150. https://doi.org/10.1002/yea.1072
  43. Verho R, Londesborough J, Penttila M, Richard P. 2003. Engineering redox cofactor regeneration for improved pentose fermentation in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 69: 5892-5897. https://doi.org/10.1128/AEM.69.10.5892-5897.2003
  44. Washuttl J, Rieder P, Bancher E. 1973. A qualitative and quantitative study of sugar alcohols in several foods. J. Food Sci. 38: 1262-1263. https://doi.org/10.1111/j.1365-2621.1973.tb07257.x
  45. Watanabe S, Abu Saleh A, Pack SP, Annaluru N, Kodaki T, Makino K. 2007. Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing proteinengineered NADH-preferring xylose reductase from Pichia stipitis. Microbiology 153: 3044-3054. https://doi.org/10.1099/mic.0.2007/007856-0
  46. Zhang B, Zhang L, Wang D, Gao X, Hong J. 2011. Identification of a xylose reductase gene in the xylose metabolic pathway of Kluyveromyces marxianus NBRC1777. J. Ind. Microbiol. Biotechnol. 38: 2001-2010. https://doi.org/10.1007/s10295-011-0990-z

Cited by

  1. Cloning of the Transketolase Gene from Erythritol-Producing Yeast Candida magnoliae vol.24, pp.10, 2014, https://doi.org/10.4014/jmb.1407.07032