• Title/Summary/Keyword: xylanase

Search Result 466, Processing Time 0.021 seconds

Characterization of Xylanase from Bacillus agaradhaerens DK-2386 Isolated from Korean Soil (토양으로부터 분리한 Bacillus agaradhaerens DK-2386 균주가 생산하는 Xylanase의 특성)

  • Choi, Ji-Hwi;Park, Young-Seo;Lee, Hyungjae;Bai, Dong-Hoon
    • Microbiology and Biotechnology Letters
    • /
    • v.43 no.4
    • /
    • pp.330-335
    • /
    • 2015
  • The optimum conditions for the production of xylanase from Bacillus agaradhaerens DK-2386 have been previously investigated. In this study xylanase was purified by ammonium sulfate precipitation and CM-sepharose ion exchange chromatography. The molecular mass of the xylanase as determined by SDS-PAGE was 23 kDa in a form of monomeric enzyme. The optimum pH and temperature for xylanase activity was 6.0 and $60^{\circ}C$, respectively. Xylanase activity was increased by the addition of EDTA and then stabilized at $40^{\circ}C$ for 24 h. The maximum xylanase activity was obtained when Birchwood xylan was used as a substrate and the $V_{max}$ and $K_m$ were $49,724{\mu}mol/min$ and 6.08 mg/ml, respectively.

Influence of Phytase and Xylanase Supplementation on Growth Performance and Nutrient Utilisation of Broilers Offered Wheat-based Diets

  • Selle, P.H.;Ravindran, V.;Ravindran, G.;Pittolo, P.H.;Bryden, W.L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.3
    • /
    • pp.394-402
    • /
    • 2003
  • Individual and combined supplementation of phosphorus-adequate, wheat-based broiler diets with exogenous phytase and xylanase was evaluated in three experiments. The effects of the enzyme combination in lysine-eficient diets containing wheat and sorghum were more pronounced than those of the individual feed enzymes. The inclusion of phytase plus xylanase improved (p<0.05) weight gains (7.3%) and feed efficiency (7.0%) of broilers (7-28 days post-hatch) and apparent metabolisable energy (AME) by 0.76 MJ/kg DM. Phytase plus xylanase increased (p<0.05) the overall, apparent ileal digestibility of amino acids by 4.5% (0.781 to 0.816); this was greater than the responses to either phytase (3.6%; 0.781 to 0.809) or xylanase (0.7%; 0.781 to 0.784). Absolute increases in amino acid digestibility with the combination exceeded the sum of the individual increases generated by phytase and xylanase for alanine, aspartic acid, glutamic acid, glycine, histidine, isoleucine, phenylalanine, threonine, tyrosine and valine. These synergistic responses may have resulted from phytase and xylanase having complementary modes of action for enhancing amino acid digestibilities and/or facilitating substrate access. The two remaining experiments were almost identical except wheat used in Experiment 2 had a higher phytate concentration and a lower estimated AME content than wheat used in Experiment 3. Individually, phytase and xylanase were generally more effective in Experiment 2, which probably reflects the higher dietary substrate levels present. Phytase plus xylanase increased (p<0.05) gains (15.4%) and feed efficiency (7.0%) of broiler chicks from 4-24 days post-hatch in Experiment 2; whereas, in Experiment 3, the combination increased (p<0.05) growth to a lesser extent (5.6%) and had no effect on feed efficiency. This difference in performance responses appeared to be 'rotein driven'as the combination increased (p<0.05) nitrogen retention in Experiment 2 but not in Experiment 3; whereas phytase plus xylanase significantly increased AME in both experiments. In Experiments 2 and 3 the combined inclusion levels of phytase and xylanase were lower that the individual additions, which demonstrates the benefits of simultaneously including phytase and xylanase in wheat-based poultry diets.

Development of High Efficient Enzymatic Deinking Agent by Microorganism(I) -Isolation and Screening of Bacteria Producing Cellulase and Xylanase- (미생물 효소를 이용한 고효율 효소 탈묵제의 개발(제1보) -Cellulase와 Xylanase를 생산하는 Bacteria의 분리 및 선발-)

  • 박성철;강진하;이양수
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.35 no.1
    • /
    • pp.34-40
    • /
    • 2003
  • This study was carried out to select the useful bacteria which secret extracellula enzymes for enzymatic deinking agent of old newspaper. CMCase, FPase and xylanase activities of the bacteria liquid culture were measured at optimal growth conditions. Clear zone test was checked on the solid culture. The results of this study were as follow: Eight strains of 28 bacteria isolated from a paper mill soil ground were shown strong CMCase and xylanase activity with the clear zone test. The optimal pH and temperature for culture growth were 6~8 and 26~$34^{\circ}C$, respectively and optimal culture period were less than 60 hours. Based on CMCase, FPase and xylanase activity, strain No. 18, 21, 22 and 28 which were relatively higher than the other strains, were selected for further enzymatic deinking research.

Advanced Refining Effects of Wood Pulp Treated Hemicellulase (Hemicellulase 처리에 의한 목재 펄프의 고해 효과 변화)

  • Kim, Byong-Hyun;Shin, Kwang-Chul
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.26 no.1
    • /
    • pp.113-124
    • /
    • 2008
  • Viscosity of cellulose pulp was greatly decreased with endo-xylanase treatment but tiny decreased with exo-xylanase treatment. Change of freeness was greatly influenced with exo-xylanase treatment. The first stage of refining(5,000 revolution), freeness was greatly decreased with exo-xylanase treatment. After middle stage of refining(10,000 revolution) change of freeness was similar to endo-xylanase treatment. WRV(water retention value) was more effective exo-xylanas than endo-xylanase treatment. Interfiber bonding of cellulose fiber was disintegrated with exo-xylanse treatment.

  • PDF

Cellulase-Free Thermostable Alkaline Xylanase from Thermophilic and Alkalophilic Bacillus sp. JB-99

  • Naik, G.R.;Johnvesly, B.;Virupakshi, S.;Patil, G.N.;Ramalingam
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.1
    • /
    • pp.153-156
    • /
    • 2002
  • The characterization of a partially purified, cellulase-free, thermostable alkaline xylanase from thermoalkalophilic Bacillus sp. JB-99 was investigated. The xylanase production was the highest when birchwood xylan was added to a medium containing finely powdered rice bran, showing 4,826 IU$ml^-1$ of activity for 15 h of incubation. The partially purified xylanase exhibited an optimum temperature and pH at $70^C{\circ}$ and 10, respectively. The enzyme was stable at pH 5-11 at $50^C{\circ}$. The xylanase activity was strongly inhibited by $Hg^2+$, while dithiothreitol, cysteine, and ${\beta}$-mercaptoethanol enhanced the activity.

Properties of Active Sites of D-Xylanase and $\beta$-Xylosidase from Penicillium verruculosum (Penicillium verruculosum의 D-Xylanase와 $\beta$-Xylosidase의 활성부위 특성)

  • 조남철
    • The Korean Journal of Food And Nutrition
    • /
    • v.7 no.1
    • /
    • pp.1-7
    • /
    • 1994
  • To investigate the characteristics of active sites of the D-xylanase and $\beta$-xylosidase purified from Penicillium verruculosum, effects of various chemicals on the enzyme activity were analyzed. The D-xylanase was activated by Cua), however it was inhibited by metal ions, Hg2+ and Mna+, by chemicals, N-bromosuccinimide, iodine, diethylpyrocarbonate, and 2,3-butanedione. These results suggested that the D-xylanase from Penicillium verruculosum contained tyrosine, histidine, arginine and tryptophan at the active center. The $\beta$-xylosidase was inhibited by Hg2+, N-bromosuccinimide and sodium dodecyl sulfate, however it was not effected by Mn2+ and Cu2). It was suggested that the enzyme contained tryptophan at the active center.

  • PDF

Purification and Characterization of Xylanase from Bacillus sp. Strain DSNC 101

  • Cho, Nam-Chul;Bai, Suk
    • Journal of Microbiology and Biotechnology
    • /
    • v.7 no.6
    • /
    • pp.386-390
    • /
    • 1997
  • A xylanase from the Bacillus sp. strain DSNC 101, isolated from soil, was purified to homogeneity by anion-exchange and hydrophobic interaction chromatography followed by gel filtration chromatography. The enzyme cleaved xylan, but not carboxymethyl cellulose, Avicel, soluble starch, and pNPX. The main product of oat spelts xylan hydrolysates was xylobiose. The xylanase had a molecular weight of 25 kDa determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Optimum temperature and pH for the xylanase activity were $50^{\circ}C$ and 6.0, respectively. $K_{m}\;and\;V_{max}$ of the enzyme for oat spelts xylan were 12.5 mg of xylan/ml and 869.5 unit/mg of protein, respectively. Xylanase was completely inhibited by Hg, Cu, and N-bromosuccinimide, but was stimulated by Ca, Co, and Mg.

  • PDF

Effects of Xylanase Treatment on Recycled Pulp Properties (Xylanase 처리가 재생섬유의 특성에 미치는 영향)

  • 최윤성;원종명
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.30 no.3
    • /
    • pp.7-14
    • /
    • 1998
  • It is well known that the recycling of pulp generates a lot of fines, and cause the hornification of fiber. Both phenomena have been contributed to a limited use of recycled fiber. Among several means which can improve the properties of recycled fiber, enzymatic treatments are considered as an effective means. Thus the effects of xylanase on the properties of recycled pulp were investigated in this study Xylanase treatment showed some refining effect at a small dosage while the fines and fibrils were reduced at higher dosage as shown in the treatment with cellulase-hemicellulase. The interesting finding is that the WRV of recycled fiber treated with xylanase was higher than that treated with the mixture of cellulase and hemicellulase. Breaking length and tear index of recycled fiber treated with xylanase were also higher.

  • PDF

Isolation of Bacillus sp. Producing Xylanase and Cellulase and Optimization of Medium Conditions for Its Production. (Xylanase, Cellulase의 생산성이 높은 Bacillus sp.의 분리 및 효소생산을 위한 배지조건의 최적화)

  • 정원형;양시용;송민동;하종규;김창원
    • Microbiology and Biotechnology Letters
    • /
    • v.31 no.4
    • /
    • pp.383-388
    • /
    • 2003
  • A bacterium producing the extracellular xylanase and CMCase was isolated from soil and has been identified as Bacillus sp. The isolate, named Bacillus sp. A-7, was shown to be very similar to Bacillus licheniformis on the basis of its biochemical and physiological properties. The maximum xylanase and CMCase production were obtained when 2.0% (w/v) glucose and 0.3% (w/v) yeast extract were used as carbon source and nitrogen source, respectively. The best mineral conditions for xylanase and CMCase production were 0.1%(w/v) $CaC1_2$. Among the various feedstuffs, 1.0%(w/v) soybean meal was selected for the best xylanase and CMCase production.

Immobilization of Xylanase Using a Protein-Inorganic Hybrid System

  • Kumar, Ashok;Patel, Sanjay K.S.;Mardan, Bharat;Pagolu, Raviteja;Lestari, Rowina;Jeong, Seong-Hoon;Kim, Taedoo;Haw, Jung Rim;Kim, Sang-Yong;Kim, In-Won;Lee, Jung-Kul
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.4
    • /
    • pp.638-644
    • /
    • 2018
  • In this study, the immobilization of xylanase using a protein-inorganic hybrid nanoflower system was assessed to improve the enzyme properties. The synthesis of hybrid xylanase nanoflowers was very effective at $4^{\circ}C$ for 72 h, using 0.25 mg/ml protein, and efficient immobilization of xylanase was observed, with a maximum encapsulation yield and relative activity of 78.5% and 148%, respectively. Immobilized xylanase showed high residual activity at broad pH and temperature ranges. Using birchwood xylan as a substrate, the $V_{max}$ and $K_m$ values of xylanase nanoflowers were 1.60 mg/ml and $455{\mu}mol/min/mg$ protein, compared with 1.42 mg/ml and $300{\mu}mol/min/mg$ protein, respectively, for the free enzyme. After 5 and 10 cycles of reuse, the xylanase nanoflowers retained 87.5% and 75.8% residual activity, respectively. These results demonstrate that xylanase immobilization using a proteininorganic hybrid nanoflower system is an effective approach for its potential biotechnological applications.