Browse > Article
http://dx.doi.org/10.5713/ajas.2003.394

Influence of Phytase and Xylanase Supplementation on Growth Performance and Nutrient Utilisation of Broilers Offered Wheat-based Diets  

Selle, P.H. (Faculty of Veterinary Science, The University of Sydney)
Ravindran, V. (Institute of Food, Nutrition and Human Health, Massey University)
Ravindran, G. (Institute of Food, Nutrition and Human Health, Massey University)
Pittolo, P.H. (Weston Animal Nutrition)
Bryden, W.L. (School of Animal Studies, The University of Queensland)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.16, no.3, 2003 , pp. 394-402 More about this Journal
Abstract
Individual and combined supplementation of phosphorus-adequate, wheat-based broiler diets with exogenous phytase and xylanase was evaluated in three experiments. The effects of the enzyme combination in lysine-eficient diets containing wheat and sorghum were more pronounced than those of the individual feed enzymes. The inclusion of phytase plus xylanase improved (p<0.05) weight gains (7.3%) and feed efficiency (7.0%) of broilers (7-28 days post-hatch) and apparent metabolisable energy (AME) by 0.76 MJ/kg DM. Phytase plus xylanase increased (p<0.05) the overall, apparent ileal digestibility of amino acids by 4.5% (0.781 to 0.816); this was greater than the responses to either phytase (3.6%; 0.781 to 0.809) or xylanase (0.7%; 0.781 to 0.784). Absolute increases in amino acid digestibility with the combination exceeded the sum of the individual increases generated by phytase and xylanase for alanine, aspartic acid, glutamic acid, glycine, histidine, isoleucine, phenylalanine, threonine, tyrosine and valine. These synergistic responses may have resulted from phytase and xylanase having complementary modes of action for enhancing amino acid digestibilities and/or facilitating substrate access. The two remaining experiments were almost identical except wheat used in Experiment 2 had a higher phytate concentration and a lower estimated AME content than wheat used in Experiment 3. Individually, phytase and xylanase were generally more effective in Experiment 2, which probably reflects the higher dietary substrate levels present. Phytase plus xylanase increased (p<0.05) gains (15.4%) and feed efficiency (7.0%) of broiler chicks from 4-24 days post-hatch in Experiment 2; whereas, in Experiment 3, the combination increased (p<0.05) growth to a lesser extent (5.6%) and had no effect on feed efficiency. This difference in performance responses appeared to be 'rotein driven'as the combination increased (p<0.05) nitrogen retention in Experiment 2 but not in Experiment 3; whereas phytase plus xylanase significantly increased AME in both experiments. In Experiments 2 and 3 the combined inclusion levels of phytase and xylanase were lower that the individual additions, which demonstrates the benefits of simultaneously including phytase and xylanase in wheat-based poultry diets.
Keywords
Phytase; Xylanase; Broilers; Growth Performance; Nutrient Utilisation;
Citations & Related Records

Times Cited By Web Of Science : 25  (Related Records In Web of Science)
Times Cited By SCOPUS : 27
연도 인용수 순위
1 Angkanaporn, K., M. Choct, W. L. Bryden, E. F. Annison and G. Annison. 1994. Effects of wheat pentosans on endogenous amino acid losses in chickens. J. Sci. Food Agric. 66:399-404.   DOI   ScienceOn
2 Barth, C. A., B. Lunding, M. Schmitz and H. Hagemeister. 1993. Soybean trypsin inhibitor(s) reduce absorption of exogenous and increase loss of endogenous protein in miniature pigs. J. Nutr. 123:2195-2200.
3 Bedford, M. R. and H. Schulz. 1998. Exogenous enzymes for pigs and poultry. Nutr. Res. Rev. 11:91-114.   DOI   ScienceOn
4 Caine, W. R., W. C. Sauer, W. A. Verstegen, S. Tamminga, S. Li and H. Schulze 1998. Guanidated protein test meals with higher concentration of soybean trypsin inhibitors increase ileal recoveries of endogenous amino acids in pigs. J. Nutr. 128:598-605.   DOI
5 Kratzer, F. H., L. Earl and C. Chiaravanont. 1974. Factors influencing the feeding values of rice bran for chickens. Poult. Sci. 53:1795-1800.   DOI
6 Parkkonen, T. A., Tervila-Wilo, M. Hopeakoski-Nurminen, A. Morgan, K. Poutanen and K. Autio. 1997. Changes in wheat microstructure following in vitro digestion. Acta Agric. Scand. 47:43-47.
7 Ravindran, V., P. H. Selle and W. L. Bryden. 1999b. Effects of phytase supplementation, individually and in combination, with glycanase on the nutritive value of wheat and barley. Poult. Sci. 78:1588-1595.   DOI
8 Simons, P. C. M., H. A. J. Versteegh, A. W. Jongbloed, P. A. Kemme, P. Slump, K. D. Bos, M. G. E. Wolters, R. F. Beudeker and G. J. Verschoor. 1990. Improvement of phosphorus availability by microbial phytase in broilers and pigs. Br. J. Nutr. 64:525-540.   DOI   ScienceOn
9 Frolich, W., T. F. Schweizer and N-G Asp. 1984. Minerals and phytate in the analysis of dietary fiber from cereals. II. Cereal Chem. 61:357-359.
10 Caldwell, R. A. 1992. Effect of calcium and phytic acid on the activation of trypsinogen and the stability of trypsin. J. Agric. Food Chem. 40:43-46.   DOI
11 Vaintraub, I. A. and V. P. Bulmaga. 1991. Effect of phytate on the in vitro activity of digestive proteinases. J. Agric. Food Chem. 39:859-861.   DOI
12 Zyla, K., D. Gogol, J. Koreleski S. Swiatkiewicz and D. R. Ledoux. 1999. Simultaneous application of phytase and xylanase to broiler feeds based on wheat: feeding experiments with growing broilers. J. Sci. Food Agric. 79:1841-1848.   DOI   ScienceOn
13 Ravindran, V., S. Cabahug, G. Ravindran and W. L. Bryden. 1999a. Influence of microbial phytase on apparent ileal amino acid digestibility in feedstuffs for broilers. Poult. Sci. 78:699-706.
14 Ikegami, S. F., H. Tsuchihashi, N. Harada, E. Tsuchihashi, Nishide and S. Innami. 1990. Effect of viscous indigestible polysaccharides on pancreatic-biliary secretion and digestive organs in rats. J. Nutr. 120:353-360.   DOI
15 Potter, L. M. 1998. Bioavailability of phosphorus from various phosphates based on body weight and toe ash measurements. Poult. Sci. 67:96-102.
16 Ravindran, V., P. H. Selle, G. Ravindran, P. C. H. Morel, A. K. Kies and W. L. Bryden. 2001. Microbial phytase improves performance, apparent metabolizable energy, and ileal anion acid digestibility of broilers fed a lysine-deficient diet. Poult. Sci. 80:338-344.   DOI
17 Camden, B. J., P. H. C. Morel, D. V. Thomas V. Ravindran and M. R. Bedford. 2001. Effectiveness of exogenous microbial phytase in improving the bioavailabilities of phosphorus and other nutrients in maize-soya-bean meal diets for broilers. Anim. Sci. 73:289-297.   DOI
18 Kikunaga, S., Y. Katoh and M. Takahashi. 1991. Biochemical changes in phosphorus compounds and in the activity of phytase and $\alpha$-amylase in the rice (Oryza sativa) grain during germination. J. Sci. Food Agric. 56:335-344.   DOI
19 Selle, P. H., V. Ravindran, R. A. Caldwell and W. L. Bryden. 2000. Phytate and phytase: Consequences for protein utilisation. Nutr. Res. Rev. 13:255-278.   DOI   ScienceOn
20 Siriwan, P., W. L. Bryden, Y. Mollah and E. F. Annison. 1993. Measurement of endogenous amino acid losses in poultry. Br. Poult. Sci. 34:939-949.   DOI   ScienceOn
21 Namkung, H. and S. Leeson. 1999. Effect of phytase enzyme on dietary nitrogen-corrected apparent metabolizable energy and the ileal digestibility of nitrogen and anion acids. Poult. Sci. 78:1317-1319.   DOI
22 Choct, M., R. J. Hughes, R. P. Trimble, K. Angkanaporn and G. Annison. 1995. Non-starch polysaccharide-degrading enzymes increase the performance of broiler chickens fed wheat of low metabolisable energy. J. Nutr. 125:485-492.
23 Choct, M. 1998. The effect of different xylanases on carbohydrate digestion and viscosity along the intestinal tract in broilers. In: Proceedings of the Australian Poultry Science Symposium. Vol. 10:111-115.
24 Zyla, K., J. Koreleski, S. Swiatkiewicz, A. Wikiera, M. Kujawski, J. Piironen and D. R. Ledoux. 2000. Effects of phosphorolytic and cell wall degrading enzymes on the performance of growing broilers fed wheat-based diets containing different calcium levels. Poult. Sci. 79:66-76.   DOI
25 Farrell, D. J. and E. Martin. 1998. Strategies to improve the nutritive value of rice bran in poultry diets. III. The addition of inorganic P and a phytase to duck diets. Brit. Poult. Sci. 39:601-611.   DOI   ScienceOn
26 Hopfer, U. 1997. Digestion and absorption of basic nutritional constituents. In Textbook of Biochemistry with Clinical Correlations (Ed. T. M. Devlin). Wiley-Liss, Inc. New York. pp. 1055-1086
27 Jacob, J. P., S. Ibrahim, R. Blair, H. Namkung and I. K. Paik. 2000. Using enzyme supplemented, reduced protein diets to decrease nitrogen and phosphorus excretion of broilers. Asian-Aust. J. Anim. Sci. 13:1561-1567.
28 Schneeman, B. O. 1977. The effect of plant fiber on trypsin and chymotrypsin activity in vitro. In: Proceedings of the Federation of American Societies for Experimental Biology Vol. 36:1118.
29 Frolich, W. 1990. Chelating properties of dietary fiber and phytate. The role for mineral availability. In: New Developments in Dietary Fiber (Ed. I. Furda and C. J. Brine). Plenum Press, New York. pp. 83-93.
30 Hew, L. I., V. Ravindran Y. Mollah and W. L Bryden. 1998. Influence of exogenous xylanase supplementation on apparent metabolisable energy and amino acid digestibility in wheat for broiler chickens. Anim. Feed Sci. Technol. 75:83-92.   DOI   ScienceOn
31 Ravindran, V., S. Cabahug, P. H. Selle and W. L. Bryden. 2000. Response of broiler chickens to microbial phytase supplementation as influenced by dietary phytic acid and nonphytate phosphorus levels. II. Effects on apparent metabolisable energy, nutrient digestibility and nutrient retention. Br. Poult. Sci. 41:193-200.   DOI   ScienceOn
32 Ravindran, V., W. L. Bryden and E. T. Kornegay. 1995. Phytates: occurrence bioavailability and implications in poultry nutrition. Poult. Avian Biol. Rev. 6:125-143.
33 Scheele, C.W., F. den Dekker, J. D. van der Klis, C. Kwakernaak and R. Orsel. 1995. Enzymes affecting the feeding value of wheat containing poultry diets. In: 2nd European Symposium on Feed Enzymes (Ed. W. van Hartingsveldt, M Hessing, J. P. van der Lugt and W. A. C. Somers). pp. 117-123.
34 Ikeda, K. and T. Kusano. 1983. In vitro inhibition of digestive enzymes by indigestible polysaccharides. Cereal Chem. 60:260-263.
35 Knuckles, B. E., D. D. Kuzmicky, M. R. Gumbmann and A. A. Betschart. 1989. Effect of myo-inositol phosphate esters on in vitro and in vivo digestion of protein. J. Food Sci. 54:1348-1350.   DOI
36 Mollah, Y., W. L. Bryden, I. R. Wallis, D. Balnave and E. F. Annison. 1983. Studies of low metabolisable energy wheats for poultry using conventional and rapid assay procedures and the effects of feed processing. Br. Poult. Sci. 24:81-89.   DOI   ScienceOn
37 Rajendran, S. and V. Prakash. 1993. Kinetics and thermodynamics of the mechanism of interaction of sodium phytate with $\alpha$-globulin. Biochem. 32:3474-3478.   DOI   ScienceOn
38 Ravindran, G. and W. L. Bryden. 1996. Tryptophan content of Australian feedstuffs. In: Proceddings of the Australian Poultry Science Symposium Vol. 8:208.
39 Singh, M. and A. D. Krikorian. 1982. Inhibition of trypsin activity by phytate. J. Agric. Food Chem. 30:799-800.   DOI
40 Kratzer, F. H. and C. G. Payne. 1977. Effect of autoclaving, hotwater treating, parboiling and addition of ethoxyquin on the value of rice bran as a dietary ingredient for chickens. Brit. Poult. Sci. 18:475-482.   DOI
41 Selle, P. H., P. H. Pittolo, R. J. Gill and W. L. Bryden. 2002. Xylanase plus phytase supplementation of broiler diets based on different wheats. In: Proceedings of the Australian Poultry Science Symposium Vol. 14:141-144.
42 Kornegay, E. T. 1996. Effect of $Natuphos^{\circledR}$ phytase on protein and amino acid digestibility and nitrogen retention in poultry. In: Phytase in Animal Nutrition and Waste Management. BASF Corporation, Mount Olive, NJ. pp. 493-514
43 Thompson, L. U. 1988. Phytic acid: a factor influencing starch digestibility and blood glucose response. In: Phytic acid: Chemistry and Applications Pilatus Press. Minneapolis, MN. (Ed. E. Graf). pp. 173-194.
44 Silversides, F. G. and M. R. Bedford. 1999. Enzymes may improve energy, protein digestibility. Feedstuffs 71(9):15-17.
45 Kanaya, K., K. Yasumoto and H. Mitsuda. 1976. Pepsin inhibition by phytate contained in rice bran. Eiyo To Shokuryo 29:341-346.   DOI
46 Bedford, M. R., T. A. Scott, F. G. Silversides, H. L. Classen, M. L. Swift and M. Pack. 1998. The effect of wheat cultivar, growing environment, and enzyme supplementation on digestibility of amino acids by broilers. Can. J. Anim. Sci. 78:335-342.   DOI   ScienceOn
47 Nyachoti, C. M., C. F. M. de Lange, B. W. McBride S. Leeson and V. M. Gabert. 2000. Endogenous gut nitrogen losses in growing pigs are not caused by increased protein synthesis rates in the small intestine. J. Nutr. 130:566-572.   DOI
48 Kornegay, E. T., Z. Zhang and D. M. Denbow. 1999. Influence of microbial phytase supplementation of a low protein/amino acid diet on performance, ileal digestibility of protein and amino acids, and carcass measurements of finishing broilers. In: Phytase in Animal Nutrition and Waste Management 2nd edition. BASF Corporation, Mount Olive, NJ. pp. 557-572.
49 Reddy, N. R., S. K. Sathe and M. D. Pierson.1988. Removal of phytate from great northern beans (Phaseolus vulgaris L.) and its combined density fraction. J. Food Sci. 53:107-110.   DOI
50 Inagawa, J., I. Kiyosawa, and T. Nagasawa 1987. Effects of phytic acid on the digestion of casein and soybean protein with trypsin, pancreatin ands pepsin. Nippon Eiyo Shokuryo Gakkaishi 40:367-373.   DOI
51 Sweeney, R. A. 1989. Generic combustion method for determination of crude protein in feeds: Collaborative study. J. Assoc. Off. Anal. Chem. 72:770-774.   PUBMED
52 Martin, E. A., J. V. Nolan, Z. Nitsan and D. J. Farrell. 1998. Strategies to improve the nutritive value of rice bran in poultry diets. IV. Effects of fish meal and a microbial phytase to duckling diets on bird performance and amino acid digestibility. Br. Poult. Sci. 39:612-621.   DOI   ScienceOn