• 제목/요약/키워드: xenograft mouse model

검색결과 56건 처리시간 0.02초

청폐사간탕(淸肺瀉肝湯)과 YKK012의 항암제 CPT-11과 병용투여 시 대장암 성장억제에 미치는 효과 (Effects of Cheongpyesagan-tang and YKK012 on in vitro and in vivo Colon Cancer Cell Growth with and without CPT-11)

  • 안훈모;한상용;김지훈;노태원;정명수;김윤경
    • 대한본초학회지
    • /
    • 제30권1호
    • /
    • pp.33-42
    • /
    • 2015
  • Objectives : The aim of this study was to evaluate the antitumor effects of Cheongpyesagan-tang(CST) and YKK012 on colon cancer. Methods : MTT assay was used to evaluate the cytotoxicity of Single herbs and combinations of CST and YKK012 on murine colon cancer cells, Colon 38. To explain effects of apoptosis in colon cancer, we performed the western blot. Effects of CST and YKK012 on antitumor activity of CPT-11 using the murine colon38 allograft tumor in BDF1 mice. Results : Single herbs and combinations of CST and YKK012 was tested in vitro, Rhei Radix (RH) and Scutellariae Radix (SC) and YKK012 showed dose-response cytotoxicity on Colon 38. This might be due to the apoptosis, as we see Bax and Caspase-3, which are apoptotic factors, was expressed in RH and SC treated cells. YKK012 also showed increased expression of Caspase-3. In mouse colorectal cancer xenograft model of colon38 cells, herbal combinations showed tendencies of tumor regression, but was not significant. Furthermore, because toxicity was observed in CST group, we reduced the dose of CST for the next experiment. The anti-tumor effects of herbal combinations were insufficient to be used as single anti-tumor agent. With simultaneous usage of CPT-11, contrary to that CST showed no synergistic effects, YKK012 which was composed by the combination of four $ER{\beta}$ selective herbs, significantly reduced the size of tumor and Bax expression was increased. Conclusions : We suggest YKK012 can be a effective cancer adjuvant therapy with CPT-11 on colon cancer.

Analysis of SARS-CoV-2 Mutations after Nirmatrelvir Treatment in a Lung Cancer Xenograft Mouse Model

  • Bo Min Kang;Dongbum Kim;Jinsoo Kim;Kyeongbin Baek;Sangkyu Park;Ha-Eun Shin;Myeong-Heon Lee;Minyoung Kim;Suyeon Kim;Younghee Lee;Hyung-Joo Kwon
    • Biomolecules & Therapeutics
    • /
    • 제32권4호
    • /
    • pp.481-491
    • /
    • 2024
  • Paxlovid is the first approved oral treatment for coronavirus disease 2019 and includes nirmatrelvir, a protease inhibitor targeting the main protease (Mpro) of SARS-CoV-2, as one of the key components. While some specific mutations emerged in Mpro were revealed to significantly reduce viral susceptibility to nirmatrelvir in vitro, there is no report regarding resistance to nirmatrelvir in patients and animal models for SARS-CoV-2 infection yet. We recently developed xenograft tumors derived from Calu-3 cells in immunodeficient mice and demonstrated extended replication of SARS-CoV-2 in the tumors. In this study, we investigated the effect of nirmatrelvir administration on SARS-CoV-2 replication. Treatment with nirmatrelvir after virus infection significantly reduced the replication of the parental SARS-CoV-2 and SARS-CoV-2 Omicron at 5 days post-infection (dpi). However, the virus titers were completely recovered at the time points of 15 and 30 dpi. The virus genomes in the tumors at 30 dpi were analyzed to investigate whether nirmatrelvir-resistant mutant viruses had emerged during the extended replication of SARS-CoV-2. Various mutations in several genes including ORF1ab, ORF3a, ORF7a, ORF7b, ORF8, and N occurred in the SARS-CoV-2 genome; however, no mutations were induced in the Mpro sequence by a single round of nirmatrelvir treatment, and none were observed even after two rounds of treatment. The parental SARS-CoV-2 and its sublineage isolates showed similar IC50 values of nirmatrelvir in Vero E6 cells. Therefore, it is probable that inducing viral resistance to nirmatrelvir in vivo is challenging differently from in vitro passage.

구강 편평상피세포암 마우스 모델에서 림프관내피 성장인자 수용체의 억제 (Inhibition of Lymphatic Endothelial Growth Factor Receptor in a Murine Model of Oral Squamous Cell Carcinoma)

  • 계준영;박영욱
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제33권1호
    • /
    • pp.1-9
    • /
    • 2011
  • Purpose: Tumor associated angiogenesis and/or lymphangiogenesis are known to be linked by VEGFR signaling pathways. These processes are regulated by several growth factors including VEGFR-2, VEGFR-3. E7080 is an orally active inhibitor of multiple tyrosine kinases including VEGFR-2, 3. Therefore, it was proposed that E7080 may inhibit angiogenesis and lymphangiogenesis. The aim of this study was to determine the effect of E7080 in a nude mouse model of OSCC. Methods: KB cells were xenografted into the submucosal tissue of the mouth floor of athymic mice. Seven days after the xenograft, the mice were randomized into 2 groups. E7080 were administered orally to the experimental group once per day. The mice were sacrificed 3 weeks after the treatment. The tumors were examined histopathologically. Immunohistochemical assays with anti- VEGF-C, VEGFR-2, VEGFR-3, phosphorylated VEGFR-2/3 (pVEGFR-2/3), and D2-40 antibodies were then performed. Results: The transplantation of human OSCC tumor cells into the mouth floor resulted in the formation of orthotopic tumors. The experimental (E7080 treatment) group showed a slowly increased tumor volume. Moreover, immunohistochemical staining demonstrated higher levels of VEGF-C, VEGFR-2, VEGFR-3, pVEGFR-2/3 and D2-40 expression in the control group than in the experimental group. Conclusion: These results suggest that E7080 may provide therapeutic benefits in OSCC.

CXCR4-STAT3 Axis Plays a Role in Tumor Cell Infiltration in an Orthotopic Mouse Glioblastoma Model

  • Han, Ji-hun;Yoon, Jeong Seon;Chang, Da-Young;Cho, Kyung Gi;Lim, Jaejoon;Kim, Sung-Soo;Suh-Kim, Haeyoung
    • Molecules and Cells
    • /
    • 제43권6호
    • /
    • pp.539-550
    • /
    • 2020
  • Glioblastoma multiforme (GBM) is a fatal malignant tumor that is characterized by diffusive growth of tumor cells into the surrounding brain parenchyma. However, the diffusive nature of GBM and its relationship with the tumor microenvironment (TME) is still unknown. Here, we investigated the interactions of GBM with the surrounding microenvironment in orthotopic xenograft animal models using two human glioma cell lines, U87 and LN229. The GBM cells in our model showed different features on the aspects of cell growth rate during their development, dispersive nature of glioma tumor cells along blood vessels, and invasion into the brain parenchyma. Our results indicated that these differences in the two models are in part due to differences in the expression of CXCR4 and STAT3, both of which play an important role in tumor progression. In addition, the GBM shows considerable accumulation of resident microglia and peripheral macrophages, but polarizes differently into tumor-supporting cells. These results suggest that the intrinsic factors of GBM and their interaction with the TME determine the diffusive nature and probably the responsiveness to non-cancer cells in the TME.

TOMM20 as a potential therapeutic target of colorectal cancer

  • Park, Sang-Hee;Lee, Ah-Reum;Choi, Keonwoo;Joung, Soyoung;Yoon, Jong-Bok;Kim, Sungjoo
    • BMB Reports
    • /
    • 제52권12호
    • /
    • pp.712-717
    • /
    • 2019
  • Translocase of outer mitochondrial membrane 20 (TOMM20) plays an essential role as a receptor for proteins targeted to mitochondria. TOMM20 was shown to be overexpressed in various cancers. However, the oncological function and therapeutic potential for TOMM20 in cancer remains largely unexplored. The purpose of this study was to elucidate the underlying molecular mechanism of TOMM20's contribution to tumorigenesis and to explore the possibility of its therapeutic potential using colorectal cancer as a model. The results show that TOMM20 overexpression resulted in an increase in cell proliferation, migration, and invasion of colorectal cancer (CRC) cells, while siRNA-mediated inhibition of TOMM20 resulted in significant decreases in cell proliferation, migration, and invasion. TOMM20 expression directly impacted the mitochondrial function including ATP production and maintenance of membrane potential, which contributed to tumorigenic cellular activities including regulation of S phase cell cycle and apoptosis. TOMM20 was overexpressed in CRC compared to the normal tissues and increased expression of TOMM20 to be associated with malignant characteristics including a higher number of lymph nodes and perineural invasion in CRC. Notably, knockdown of TOMM20 in the xenograft mouse model resulted in a significant reduction of tumor growth. This is the first report demonstrating a relationship between TOMM20 and tumorigenesis in colorectal cancer and providing promising evidence for the potential for TOMM20 to serve as a new therapeutic target of colorectal cancer.

Split genome-based retroviral replicating vectors achieve efficient gene delivery and therapeutic effect in a human glioblastoma xenograft model

  • Moonkyung, Kang;Ayoung, Song;Jiyoung, Kim;Se Hun, Kang;Sang-Jin, Lee;Yeon-Soo, Kim
    • BMB Reports
    • /
    • 제55권12호
    • /
    • pp.615-620
    • /
    • 2022
  • The murine leukemia virus-based semi-retroviral replicating vectors (MuLV-based sRRV) had been developed to improve safety and transgene capacity for cancer gene therapy. However, despite the apparent advantages of the sRRV, improvements in the in vivo transduction efficiency are still required to deliver therapeutic genes efficiently for clinical use. In this study, we established a gibbon ape leukemia virus (GaLV) envelope-pseudotyped semi-replication-competent retrovirus vector system (spRRV) which is composed of two transcomplementing replication-defective retroviral vectors termed MuLV-Gag-Pol and GaLV-Env. We found that the spRRV shows considerable improvement in efficiencies of gene transfer and spreading in both human glioblastoma cells and pre-established human glioblastoma mouse model compared with an sRRV system. When treated with ganciclovir after intratumoral injection of each vector system into pre-established U-87 MG glioblastomas, the group of mice injected with spRRV expressing the herpes simplex virus type 1-thymidine kinase (HSV1-tk) gene showed a survival rate of 100% for more than 150 days, but all control groups of mice (HSV1-tk/PBS-treated and GFP/GCV-treated groups) died within 45 days after tumor injection. In conclusion, these findings sug-gest that intratumoral delivery of the HSV1-tk gene by the spRRV system is worthy of development in clinical trials for the treatment of malignant solid tumors.

이종이형의 심장이식의 실험적 모델 (Experimental Model of Cardiac Xenograft, Mouse Heart to Rat.)

  • 김병일;손상태;신성호;정원상;김혁;김영학;강정호;지행옥;이철범;서정국
    • Journal of Chest Surgery
    • /
    • 제32권1호
    • /
    • pp.1-4
    • /
    • 1999
  • 배경: 1971년 calne에 의해 계통발생학적으로 조화성과 비조화성으로 분류된 이종이형이식이 발표된 이후, 계통발생학적으로 서로 공통점이 없는 비조화성과 공통점이 있는 조화성의 이종이형이식에서 초급성 거부반응과 촉진된 급성거부반응으로 나누어지나, 이런 조화성의 이종이형의 심장이식시에는 초급성거부반응이 없는 상태로 이종이형의 이식의 연구기회를 제공하게된다. 쥐모델에서의 조화성의 이종이형이식의 생존율을 높이는 현재의 치료법들은 높은 사망율 때문에 많은 연구재에서 이상적이지 못하다. 기존의 사이클로스포린A(Cyclosporine A) 나 새로운 면역억제제인 푸린 합성억제제인(purine synthesis inhibitor) 마이코페놀레이트 모페틸(Mycophenolate Mofetil, RS61443)은 현재 동종이형이식에는 효과적으로 임상에 이용되고 있다. 대상 및 방법: 잡종휜쥐를 수혜군으로 다 자란 생쥐를 기증군으로하여 이를 다시 4개군으로 나누어 제 1군(대조군)은 전처치나 치료약제의 투여가 없었던 군으로, 제 2군은 이식전 7∼10일전에 전처치로써 비장적출술을, 제 3군은 기존의 면역억제제인 사이클로스포린A로 치료한 군으로, 제 4군은 사이클로스포린과 새로운 면역억제제인 마이코페놀레이트 모페틸(RS 61443)을 동시에 투여한 군으로 나누어 각 군간의 술후 생존율을 비교하였다. 결과: 본문의 표와 그림에서 보여 주는 바와 같이 각군간의 생존율의 차이는 없었다. 결론: 본 저자등은 결론적으로 조화성의 이종이형의 이식은 동종이형의 이식의 지난 보고와는 거부반응이 서로 다르며, 기존 혹은 새로운 면역억제제인 마이코페놀레이트 모페틸의 투여도 이들 이종이형의 이식후 생존율을 연장하는데는 효과적이지 못하였다.

  • PDF

대장암 세포가 이식된 동물모델에서 사리장의 항암효과에 대한 연구 (Anti-cancer effect of Sarijang on colorectal cancer cells in a xenograft nude mouse model)

  • 이태희;송현경;김동윤;이이삭;서형호;최지영;김홍근;최은아;한범석
    • 한국식품과학회지
    • /
    • 제50권4호
    • /
    • pp.451-456
    • /
    • 2018
  • 본 연구는 사람유래 대장암세포가 이식된 동물모델을 사용하여 사리장의 항암효과를 확인하기 이하여 수행하였다. 사리장은 죽염과 서목태, 마늘과 유근피를 혼합 추출한 물질로써 아이소플라본을 포함하고 있으며 항염, 항산화 등의 효능이 보고된 물질이다. 이러한 사리장을 종양이 이식된 동물모델에 4주간 투여하면서 종양 크기의 변화, 종양 성장인자의 변화와 사리장의 안전성을 평가하였다. 그 결과 사리장은 종양의 크기를 감소시켰으며, 종양 성장과 관련된 ERK와 p16의 발현량을 조절함으로써 종양의 성장을 억제하는 효과를 나타냈다. 또한 사리장을 투여한 시험군에서는 체중, 장기무게, 혈청생화학적검사와 조직학적 검사에서 독성으로 인한 변화가 관찰되지 않았다. 이러한 결과는 사리장이 장기복용이 가능한 항암 보조식품의 소재로써 활용될 수 있다는 것을 의미한다고 할 수 있다.

Growth of Human Colon Cancer Cells in Nude Mice is Delayed by Ketogenic Diet With or Without Omega-3 Fatty Acids and Medium-chain Triglycerides

  • Hao, Guang-Wei;Chen, Yu-Sheng;He, De-Ming;Wang, Hai-Yu;Wu, Guo-Hao;Zhang, Bo
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권5호
    • /
    • pp.2061-2068
    • /
    • 2015
  • Background: Tumors are largely unable to metabolize ketone bodies for energy due to various deficiencies in one or both of the key mitochondrial enzymes, which may provide a rationale for therapeutic strategies that inhibit tumor growth by administration of a ketogenic diet with average protein but low in carbohydrates and high in fat. Materials and Methods: Thirty-six male BALB/C nude mice were injected subcutaneously with tumor cells of the colon cancer cell line HCT116. The animals were then randomly split into three feeding groups and fed either a ketogenic diet rich in omega-3 fatty acids and MCT (MKD group; n=12) or lard only (LKD group; n=12) or a standard diet (SD group; n=12) ad libitum. Experiments were ended upon attainment of the target tumor volume of $600mm^3$ to $700mm^3$. The three diets were compared for tumor growth and survival time (interval between tumor cell injection and attainment of target tumor volume). Results: The tumor growth in the MKD and LKD groups was significantly delayed compared to that in the SD group. Conclusions: Application of an unrestricted ketogenic diet delayed tumor growth in a mouse xenograft model. Further studies are needed to address the mechanism of this diet intervention and the impact on other tumor-relevant parameters such as invasion and metastasis.

miR-335 Targets SIAH2 and Confers Sensitivity to Anti-Cancer Drugs by Increasing the Expression of HDAC3

  • Kim, Youngmi;Kim, Hyuna;Park, Deokbum;Jeoung, Dooil
    • Molecules and Cells
    • /
    • 제38권6호
    • /
    • pp.562-572
    • /
    • 2015
  • We previously reported the role of histone deacetylase 3 (HDAC3) in response to anti-cancer drugs. The decreased expression of HDAC3 in anti-cancer drug-resistant cancer cell line is responsible for the resistance to anti-cancer drugs. In this study, we investigated molecular mechanisms associated with regulation of HDAC3 expression. MG132, an inhibitor of proteasomal degradation, induced the expression of HDAC3 in various anti-cancer drug-resistant cancer cell lines. Ubiquitination of HDAC3 was observed in various anti-cancer drug-resistant cancer cell lines. HDAC3 showed an interaction with SIAH2, an ubiquitin E3 ligase, that has increased expression in various anti-cancer drug-resistant cancer cell lines. miRNA array analysis showed the decreased expression of miR-335 in these cells. Targetscan analysis predicted the binding of miR-335 to the 3'-UTR of SIAH2. miR-335-mediated increased sensitivity to anti-cancer drugs was associated with its effect on HDAC3 and SIAH2 expression. miR-335 exerted apoptotic effects and inhibited ubiquitination of HDAC3 in anti-cancer drug-resistant cancer cell lines. miR-335 negatively regulated the invasion, migration, and growth rate of cancer cells. The mouse xenograft model showed that miR-335 negatively regulated the tumorigenic potential of cancer cells. The down-regulation of SIAH2 conferred sensitivity to anti-cancer drugs. The results of the study indicated that the miR-335/SIAH2/HDAC3 axis regulates the response to anti-cancer drugs.