• Title/Summary/Keyword: x-ray cross-sectional image

Search Result 38, Processing Time 0.033 seconds

A Study on Characteristics of Surface Modified Polyimide Film by Wet Process (습식 표면개질 처리된 폴리이미드 필름 표면의 특성에 관한 연구)

  • Koo, S.B.;Lee, H.K.
    • Journal of the Korean institute of surface engineering
    • /
    • v.39 no.4
    • /
    • pp.166-172
    • /
    • 2006
  • Metallized Polyimide films are extensively used as base materials in microelectronics, optical and automotive applications. However it is difficult to deposit metals on those because of their structural stabilities. In this work, polyimide films are modified by a wet process with alkalinemetalhydroxide and additives to introduce functional groups. The surface molecular structures of polyimide are investigated using X-ray photoelectron spectroscopy(XPS), fourier transform infrared reflection spectroscopy(FTIR-ATR), atomic force micro-scopic(AFM). XPS spectra and FTIR spectra show that the surface structure of polyimide is converted into potassium polyamate. AFM image and AFM cross-sectional analyses reveal the increased roughness on the modified surface of polyimide films. As a result, it is shown that the adhesion strength between polyimide surface and electroless nickel layer is increased by the nano-anchoring effect.

Morphological Analysis of Hydraulically Stimulated Fractures by Deep-Learning Segmentation Method (딥러닝 기반 균열 추출 기법을 통한 수압 파쇄 균열 형상 분석)

  • Park, Jimin;Kim, Kwang Yeom ;Yun, Tae Sup
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.8
    • /
    • pp.17-28
    • /
    • 2023
  • Laboratory-scale hydraulic fracturing experiments were conducted on granite specimens at various viscosities and injection rates of the fracturing fluid. A series of cross-sectional computed tomography (CT) images of fractured specimens was obtained via a three-dimensional X-ray CT imaging method. Pixel-level fracture segmentation of the CT images was conducted using a convolutional neural network (CNN)-based Nested U-Net model structure. Compared with traditional image processing methods, the CNN-based model showed a better performance in the extraction of thin and complex fractures. These extracted fractures extracted were reconstructed in three dimensions and morphologically analyzed based on their fracture volume, aperture, tortuosity, and surface roughness. The fracture volume and aperture increased with the increase in viscosity of the fracturing fluid, while the tortuosity and roughness of the fracture surface decreased. The findings also confirmed the anisotropic tortuosity and roughness of the fracture surface. In this study, a CNN-based model was used to perform accurate fracture segmentation, and quantitative analysis of hydraulic stimulated fractures was conducted successfully.

Geometry and Property Database for Korean Spine Research (한국인 척추 연구를 위한 형상 / 물성 정보 구축)

  • Lee, Seung-Bock;Lee, Sang-Ho;Han, Seung-Ho;Kwak, Dai-Soon
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.10
    • /
    • pp.488-493
    • /
    • 2011
  • The Korean spine geometry and property data for researchers were made by KISTI and Catholic Institute for Applied Anatomy. We took whole spine CT, X-Ray, BMD scan for making high resolution cross-sectional spine images using more 20 donated cadavers(60 - 80 years). Then we constructed 3-dimensional volume model using serial CT images by Mimics software. The major morphometric parameters of vertebrae were measured. Mechanical motion and property data were obtained by the same cadavers using the DEXA for BMD and the spine simulator. The Korean spine geometry and property data could be used for research and development of medical device.

A comparison of canal centering abilities of four root canal instrument systems using X-ray micro-computed tomography (방사선 미세컴퓨터단층촬영을 이용한 네 종류 file systems의 중심유지능에 관한 비교)

  • Ko, Hye-Suk;You, Heyon-Mee;Park, Dong-Sung
    • Restorative Dentistry and Endodontics
    • /
    • v.32 no.1
    • /
    • pp.61-68
    • /
    • 2007
  • The purpose of this study was to compare the centering abilities of four root canal instrument systems and the amounts of dentin removed after root canal shaping using them. The mesial canals of twenty extracted mandibular first molars having $10-20^{\circ}$ curvature were scanned using X-ray micro-computed tomography (XMCT)-scanner before root canals were instrumented. They were divided into four groups (n = 10 per group). In Group 1, root canals were instrumented by the step-back technique with stainless steel K-Flexofile after coronal flaring. The remainders were instrumented by the crown-down technique with Profile (Group 2), ProTaper (Group 3) or K3 system (Group 4). All canals were prepared up to size 25 at the end-point of preparation and scanned again. Scanned images were processed to reconstruct three-dimensional images using three-dimensional image software and the changes of total canal volume were measured. Pre-and post-operative cross-sectional images of 1, 3, 5, and 7 mm from the apical foramen were com pared. For each level, centering ratio were calculated using Adobe Photoshop 6.0 and image software program. ProTaper and K3 systems have a tendency to remove more dentin than the other file systems. In all groups, the lowest value of centering ratio at 3 mm level was observed. And except at 3 mm level, ProTaper system made canals less centered than the other systems (p < 0.05).

Characteristics of Indium Doped SnO2 Thick Film for Gas Sensors (Indium 첨가된 SnO2 후막형 가스센서의 특성)

  • Yu, Il;Lee, Ji-Young
    • Korean Journal of Materials Research
    • /
    • v.20 no.8
    • /
    • pp.408-411
    • /
    • 2010
  • Indium doped $SnO_2$ thick films for gas sensors were fabricated by a screen printing method on alumina substrates. The effects of indium concentration on the structural and morphological properties of the $SnO_2$ were investigated by X-ray diffraction and Scanning Electron Microscope. The structural properties of the $SnO_2$:In by X-ray diffraction showed a (110) dominant $SnO_2$ peak. The size of $SnO_2$ particles ranged from 0.05 to $0.1\;{\mu}m$, and $SnO_2$ particles were found to contain many pores, according to the SEM analysis. The thickness of the indium-doped $SnO_2$ thick films for gas sensors was about $20\;{\mu}m$, as confirmed by cross sectional SEM image. Sensitivity of the $SnO_2$:In gas sensor to 2000 ppm of $CO_2$ gas and 50 ppm of H2S gas was investigated for various indium concentrations. The highest sensitivity to $CO_2$ gas and H2S gas of the indium-doped $SnO_2$ thick films was observed at the 8 wt% and 4 wt% indium concentration, respectively. The good sensing performances of indium-doped $SnO_2$ gas sensors to $CO_2$ gas were attributed to the increase of oxygen vacancies and surface area in the $SnO_2$:In. The $SnO_2$:In gas sensors showed good selectivity to $CO_2$ gas.

The effect of different radiographic parameters on the height, width and visibility of cross-sectional image of mandible in spiral tomography (나선형 단층방사선사진촬영에서 촬영조건이 악골 단면상의 높이, 폭 및 인지도에 미치는 영향)

  • Lee Tae-Wan;Han Won-Jeong;Kim Eun-Kyung
    • Imaging Science in Dentistry
    • /
    • v.33 no.1
    • /
    • pp.43-49
    • /
    • 2003
  • Purpose : To evaluate the differences in bone height, bone width, and visibility of posterior spiral tomographic images according to various exposure directions, image layer thickness, and inclination of the mandibular inferior border. Materials and Methods: Six partially and completely edentulous dry mandibles were radiographed using Scanora spiral tomography. Spiral tomography was performed at different exposure directions (dentotangential and maxillotangential projection), image layer thicknesses (2 mm, 4 mm and 8 mm), and at various inclinations to the mandibular border (+ 100, 00 and -10°). The bone height and width was measured using selected tomographic images. The visibility of mandibular canal, crestal bone, and buccal and lingual surfaces were graded as 0, 1, or 2. Results : The bone width at the maxillo-tangential projection was wider than at the dento-tangential projection (p < 0.05). The visibility of buccal and lingual surface at the maxillo-tangential projection was higher than at the dento-tangential projection (p<0.05). Thinner image layer thicknesses resulted in greater visibility of buccal and lingual surfaces (p < 0.05). Bone height was greatest in the -10° group, and at the same time the bone width of the same group was the narrowest (p < 0.05). The visibility of alveolar crest and buccal surface of the + 10° group was the highest, while the visibility of the mandibular canal was greatest in the 00 group. Conclusion: When spiral tomography is performed at the mandibular posterior portion for visualization prior to implant surgery, it is important that the inferior border of mandible be positioned as parallel as possible to the floor. A greater improvement of visibility can be achieved by maintaining a thin image layer thickness when performing spiral tomography.

  • PDF

Microstructure Evaluation of Nano-thick Au-inserted Nickel Silicides (나노급 Au층 삽입 니켈실리사이드의 미세구조 변화)

  • Yoon, Ki-Jeong;Song, Oh-Sung
    • Korean Journal of Materials Research
    • /
    • v.18 no.1
    • /
    • pp.5-11
    • /
    • 2008
  • Thermally evaporated 10 nm-Ni/1 nm-Au/(30 nm-poly)Si structures were fabricated in order to investigate the thermal stability of Au-inserted nickel silicide. The silicide samples underwent rapid thermal annealing at $300{\sim}1100^{\circ}C$ for 40 seconds. The sheet resistance was measured using a four-point probe. A scanning electron microscope and a transmission electron microscope were used to determine the cross-sectional structure and surface image. High-resolution X-ray diffraction and a scanning probe microscope were employed for the phase and surface roughness. According to sheet resistance and XRD analyses, nickel silicide with Au had no effect on widening the NiSi stabilization temperature region. Au-inserted nickel silicide on a single crystal silicon substrate showed nano-dots due to the preferred growth and a self-arranged agglomerate nano phase due to agglomeration. It was possible to tune the characteristic size of the agglomerate phase with silicidation temperatures. The nano-thick Au-insertion was shown to lead to self-arranged microstructures of nickel silicide.

A Red Ginseng Internal Measurement System Using Back-Projection (Back-Projection을 활용한 홍삼 내부 측정 시스템)

  • Park, Jaeyoung;Lee, Sangjoon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.7 no.10
    • /
    • pp.377-382
    • /
    • 2018
  • This study deals with internal state and tissue density analysis methods for red ginseng grade determination. For internal measurement of red ginseng, there have been various studies on nondestructive testing methods since the 1990s, It was difficult to grasp the most important inner hole and inside whites in the grading. So in this study, we developed a closed capturing device for infra-red illumination environment, and developed an internal measurement system that can detect the presence and diameter of inner hole and inside whites. Made devices consisted of infrared lights with a high transmission rate of red ginseng in 920 nanometer wave band, a infra-red camera and a Y axis actuator with a red ginseng automatically controlled focus on the camera. The proposed algorithm performs an auto-focus system on the Y-axis actuator to automatically adjust the sharp focus of the object according to the size and thickness. Then red ginseng is rotated $360^{\circ}$ at $1^{\circ}$ intervals and 360 total images are acquired, and reconstructed as a sinogram through Radon transform and Back-projection algorithm was performed to acquire internal images of red ginseng. As a result of the algorithm, it was possible to acquire internal cross-sectional image regardless of the thickness and shape of red ginseng. In the future, if more than 10,000 different shapes and sizes of red ginseng internal cross-sectional image are acquired and the classification criterion is applied, it can be used as a reliable automated ginseng grade automatic measurement method.

Development of an evidence-based clinical imaging diagnostic guideline for implant planning: Joint recommendations of the Korean Academy of Oral and Maxillofacial Radiology and National Evidence-based Healthcare Collaborating Agency

  • Kim, Min-Ji;Lee, Sam-Sun;Choi, Miyoung;Ha, Eun Ju;Lee, Chena;Kim, Jo-Eun;Heo, Min-Suk
    • Imaging Science in Dentistry
    • /
    • v.50 no.1
    • /
    • pp.45-52
    • /
    • 2020
  • Purpose: This study was conducted to develop an evidence-based clinical imaging diagnostic guideline for implant planning, taking into account efficacy, benefits, and risks. Materials and Methods: The guideline development process employed the adaptation methodology used for Korean clinical imaging guidelines(K-CIG). Core databases(Ovid-Medline, Ovid-Embase, National Guideline Clearinghouse, Guideline International Network) and domestic databases (KoreaMed, KMbase, and KoMGI) were searched for guidelines. The retrieved articles were analyzed by 2 reviewers, and articles were selected using well-established inclusion criteria. Results: The search identified 294 articles, of which 3 were selected as relevant guidelines. Based on those 3 guidelines, 3 recommendations for implant planning were derived. Conclusion: We recommend radiography or cone-beam computed tomography (CBCT) scanning for individual patients judged to require a cross-sectional image after reading of a panoramic X-ray image and a conventional intraoral radiological image. Various steps should be taken to raise awareness of these recommendations among clinicians and the public, and K-CIG should be regularly reviewed and revised.

Electrical Properties in $Pt/SrTiO_3/Pb_x(Zr_{0.52}, Ti_{0.48})O_3/SrTiO_3/Si$ Structure and the Role of $SrTiO_3$ Film as a Buffer Layer ($Pt/SrTiO_3/Pb_x(Zr_{0.52}, Ti_{0.48})O_3/SrTiO_3/Si$ 구조의 전기적 특성 분석 및 $SrTiO_3$박막의 완충층 역할에 관한 연구)

  • 김형찬;신동석;최인훈
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.6
    • /
    • pp.436-441
    • /
    • 1998
  • $Pt/SrTiO_3/Pb_x(Zr_{0.52}, Ti_{0.48})O_3/SrTiO_3/Si$ structure was prepared by rf-magnetron sputtering method for use in nondestructive read out ferroelectric RAM(NDRO-FEAM). PBx(Zr_{0.52}Ti_{0.48})O_3}$(PZT) and $SrTiO_3$(STO) films were deposited respectively at the temperatures of $300^{\circ}C and 500^{\circ}C$on p-Si(100) substrate. The role of the STO film as a buffer layer between the PZT film and the Si substrate was studied using X-ray diffraction (XRD), Auger electron spectroscopy (ASE), and scanning electron microscope(SEM). Structural analysis on the interfaces was carried out using a cross sectional transmission electron microscope(TEM). For PZT/Si structure, mostly Pb deficient pyrochlore phase was formed due to the serious diffusion of Pb into the Si substrate. On the other hand, for STO/PZT/STO/Si structure, the PZT film had perovskite phase and larger grain size with a little Pb interdiffusion. the interfaces of the PZT and the STO film, of the STO film and the interface layer and $SiO_2$, and of the $SiO_2$ and the Si substate had a good flatness. Across sectional TEM image showed the existence of an amorphous layer and $SiO_2$ with 7nm thickness between the STO film and the Si substrate. The electrical properties of MIFIS structure was characterized by C-V and I-V measurements. By 1MHz C-V characteristics Pt/STO(25nm)/PZT(160nm)/STO(25nm)/Si structure, memory window was about 1.2 V for and applied voltage of 5 V. Memory window increased by increasing the applied voltage and maximum voltage of memory window was 2 V for V applied. Memory window decreased by decreasing PZT film thickness to 110nm. Typical leakage current was abour $10{-8}$ A/cm for an applied voltage of 5 V.

  • PDF