DOI QR코드

DOI QR Code

Morphological Analysis of Hydraulically Stimulated Fractures by Deep-Learning Segmentation Method

딥러닝 기반 균열 추출 기법을 통한 수압 파쇄 균열 형상 분석

  • Park, Jimin (Dept. of Civil and Environmental Eng., Yonsei Univ.) ;
  • Kim, Kwang Yeom (Dept. of Energy & Resources Engrg., Korea Maritime & Ocean Univ.) ;
  • Yun, Tae Sup (Dept. of Civil and Environmental Eng., Yonsei Univ.)
  • 박지민 (연세대학교 건설환경공학과) ;
  • 김광염 (한국해양대학교 에너지자원공학과) ;
  • 윤태섭 (연세대학교 건설환경공학과)
  • Received : 2023.06.15
  • Accepted : 2023.07.17
  • Published : 2023.08.31

Abstract

Laboratory-scale hydraulic fracturing experiments were conducted on granite specimens at various viscosities and injection rates of the fracturing fluid. A series of cross-sectional computed tomography (CT) images of fractured specimens was obtained via a three-dimensional X-ray CT imaging method. Pixel-level fracture segmentation of the CT images was conducted using a convolutional neural network (CNN)-based Nested U-Net model structure. Compared with traditional image processing methods, the CNN-based model showed a better performance in the extraction of thin and complex fractures. These extracted fractures extracted were reconstructed in three dimensions and morphologically analyzed based on their fracture volume, aperture, tortuosity, and surface roughness. The fracture volume and aperture increased with the increase in viscosity of the fracturing fluid, while the tortuosity and roughness of the fracture surface decreased. The findings also confirmed the anisotropic tortuosity and roughness of the fracture surface. In this study, a CNN-based model was used to perform accurate fracture segmentation, and quantitative analysis of hydraulic stimulated fractures was conducted successfully.

본 연구에서는 화강암 시편을 대상으로 파쇄 유체의 점성과 주입 속도를 변화시키며 실내 수압 파쇄 실험을 수행하였고, 3D X-ray CT 촬영을 통해 파쇄 후 시편 내부를 관찰하였다. 이미지 처리에 탁월한 성능을 보이는 합성곱 신경망(Convolutional Neural Network, CNN) 기반 Nested U-Net 모델 구조를 활용하여 CT 이미지 내 수압 파쇄 균열 추출을 수행하였고, 복잡한 형상의 미세균열을 정교하게 추출할 수 있었다. CNN 기반 모델로 추출된 균열을 3차원으로 재구성하여 균열의 부피, 두께, 굴곡도, 균열면 거칠기를 분석하였다. 그 결과 파쇄 유체의 점성이 클수록 균열 부피와 두께가 증가하였고, 굴곡도와 균열면의 거칠기가 감소하는 경향을 보였다. 또한 균열면의 굴곡도와 거칠기 이방성이 존재함을 확인할 수 있었다. 본 연구는, CNN 기반의 균열 추출 모델을 활용해 전통적인 이미지 처리 방법보다 정교한 균열 추출을 수행하고, 이를 기반으로 수압 파쇄 균열의 정량 분석을 성공적으로 수행하였다.

Keywords

Acknowledgement

본 연구는 한국연구재단(NRF-2023R1A2C2003534)의 지원사업으로 이루어진 것으로 해당 부처에 깊은 감사를 드립니다.

References

  1. Bui, X. N., Nguyen, H., Choi, Y., Nguyen-Thoi, T., Zhou, J., and Dou, J. (2020), Prediction of Slope Failure in Open-pit Mines Using a Novel Hybrid Artificial Intelligence Model based on Decision Tree and Evolution Algorithm, Scientific reports, Vol.10, No.1, pp.1-17.  https://doi.org/10.1038/s41598-019-56847-4
  2. Bandara, K. M. A. S., Ranjith, P. G., and Kumari, W. G. P. (2022), A Coupled X-Ray Imaging and Experimental Permeability Study of Propped Hydraulically Induced Fractures, Rock Mechanics and Rock Engineering, Vol.55, No.5, pp.2581-2596  https://doi.org/10.1007/s00603-021-02566-0
  3. Bao, Y., Tang, Z., Li, H., and Zhang, Y. (2019), Computer Vision and Deep Learning-based Data Anomaly Detection Method for Structural Health Monitoring, Structural Health Monitoring, Vol.18, No.2, pp.401-421.  https://doi.org/10.1177/1475921718757405
  4. Barton, N. and de Quadros, E. F. (1997), Joint Aperture and Roughness in the Prediction of Flow and Groutability of Rock Masses, International Journal of Rock Mechanics and Mining Sciences, Vol.34, No.3-4, 252-e1. 
  5. Bennour, Z., Ishida, T., Nagaya, Y., Chen, Y., Nara, Y., Chen, Q., Sekine, K., and Nagano, Y. (2015), Crack Extension in Hydraulic Fracturing of Shale Cores Using Viscous Oil, Water, and Liquid Carbon Dioxide, Rock Mechanics and Rock Engineering, Vol.48, No.4, pp.1463-1473.  https://doi.org/10.1007/s00603-015-0774-2
  6. Cha, Y. J., Choi, W., Suh, G., Mahmoudkhani, S., and Buyukozturk, O. (2018), Autonomous Structural Visual Inspection Using Region-Based Deep Learning for Detecting Multiple Damage Types, Computer-Aided Civil and Infrastructure Engineering, Vol.33, No.9, pp.731-747.  https://doi.org/10.1111/mice.12334
  7. Chen, F. C. and Jahanshahi, M. R. (2018), NB-CNN: Deep Learning-Based Crack Detection Using Convolutional Neural Network and Naive Bayes Data Fusion, IEEE Transactions on Industrial Electronics, Vol.65, No.5, pp.4392-4400.  https://doi.org/10.1109/TIE.2017.2764844
  8. Chen, H., Hu, Y., Liu, J., Liu, F., Liu, Z., Kang, Y., and Wang, X. (2021), Surface Characteristics Analysis of Fractures Induced by Supercritical CO2 and Water through Three-dimensional Scanning and Scanning Electron Micrography, Journal of Rock Mechanics and Geotechnical Engineering, Vol.13, No.5, pp.1047-1058.  https://doi.org/10.1016/j.jrmge.2021.04.006
  9. Chen, L. C., Papandreou, G., Kokkinos, I., Murphy, K., and Yuille, A. L. (2014), Semantic image segmentation with deep convolutional nets and fully connected crfs, arXiv preprint arXiv:1412.7062. 
  10. Chen, Y., Nagaya, Y., and Ishida, T. (2015), Observations of Fractures Induced by Hydraulic Fracturing in Anisotropic Granite, Rock Mechanics and Rock Engineering, Vol.48, No.4, pp.1455-1461.  https://doi.org/10.1007/s00603-015-0727-9
  11. Cheng, C., Hale, S., Milsch, H., and Blum, P. (2020), Measuring Hydraulic Fracture Apertures: A Comparison of Methods, Solid Earth, Vol.11, No.6, pp.2411-2423.  https://doi.org/10.5194/se-11-2411-2020
  12. Fallahzadeh, S. H., Hossain, M. M., Cornwell, A. J., and Rasouli, V. (2017), Near Wellbore Hydraulic Fracture Propagation from Perforations in Tight Rocks: The Roles of Fracturing Fluid Viscosity and Injection Rate, Energies, Vol.10, No.3, p.359. 
  13. Fan, X., Cao, P., Shi, P., Wang, J., Xin, Y., and Huang, W. (2021), A Nested Unet with Attention Mechanism for Road Crack Image Segmentation, 2021 6th International Conference on Signal and Image Processing, ICSIP 2021, pp.189-193. 
  14. Gallegos, T. J., Varela, B. A., Haines, S. S., and Engle, M. A. (2015), Hydraulic Fracturing Water Use Variability in the United States and Potential Environmental Implications, Water Resources Research, Vol.51, No.7, pp.5839-5845.  https://doi.org/10.1002/2015WR017278
  15. Ha, S. J., Choo, J., and Yun, T. S. (2018), Liquid CO2 Fracturing: Effect of Fluid Permeation on the Breakdown Pressure and Cracking Behavior, Rock Mechanics and Rock Engineering, Vol.51, No.11, pp.3407-3420.  https://doi.org/10.1007/s00603-018-1542-x
  16. Ha, S. J., Kim, Y., and Yun, T. S. (2021), Development of Microcracks in Granitic Rock by Liquid CO2 Fracturing, International Journal of Rock Mechanics and Mining Sciences, 146. 
  17. Ha, S. J. and Yun, T. S. (2019), Experimental Study of Breakdown Pressure, Acoustic Emission, and Crack Morphology in Liquid CO2 Fracturing, Tunnel and Underground Space, Vol.29, No.3, pp.157-171.  https://doi.org/10.7474/TUS.2019.29.3.157
  18. Ha, S. J., Yun, T. S., Kim, K. Y., and Jung, S. G. (2017), Experimental Study of Pumping Rate Effect on Hydraulic Fracturing of Cement Paste and Mortar, Rock Mechanics and Rock Engineering, Vol.50, pp.3115-3119.  https://doi.org/10.1007/s00603-017-1276-1
  19. Haimson, B. and Fairhurst, C. (1969), Hydraulic Fracturing in Porous-permeable Materials, Journal of Petroleum Technology, Vol.21, No.7, pp.811-817.  https://doi.org/10.2118/2354-PA
  20. Hamishebahar, Y., Guan, H., So, S., and Jo, J. (2022), A Comprehensive Review of Deep Learning-based Crack Detection Approaches, Applied Sciences, Vol.12, No.3, p.1374. 
  21. He, J., Lin, C., Li, X., and Wan, X. (2016), Experimental Investigation of Crack Extension Patterns in Hydraulic Fracturing with Shale, sandstone and granite cores, Energies, Vol.9, No.12, p.1018. 
  22. He, J., Zhang, Y., Li, X., and Wan, X. (2019), Experimental Investigation on the Fractures Induced by Hydraulic Fracturing Using Freshwater and Supercritical CO2 in Shale Under Uniaxial Stress, Rock Mechanics and Rock Engineering, Vol.52, No.10, pp.3585-3596.  https://doi.org/10.1007/s00603-019-01820-w
  23. Ishida, T., Chen, Q., Mizuta, Y., and Roegiers, J. C. (2004), Influence of Fluid Viscosity on the Hydraulic Fracturing Mechanism, Journal of Energy Resources Technology, Transactions of the ASME, Vol.126, No.3, pp.190-200.  https://doi.org/10.1115/1.1791651
  24. Jung, S. G., Zhuang, L., Yeom, S., Kim, K. Y., and Min, K. B. (2016), Influence of the Cleavage Anisotropy of Pocheon Granite on Hydraulic Fracturing Behaviour, Tunnel and Underground Space, Vol.26, No.4, pp.327-337.  https://doi.org/10.7474/TUS.2016.26.4.327
  25. Kheradmandi, N. and Mehranfar, V. (2022), A Critical Review and Comparative Study on Image Segmentation-based Techniques for Pavement Crack Detection, Construction and Building Materials, Vol.321, 126162. 
  26. Kim, A. R., Kim, D., Byun, Y. S., and Lee, S. W. (2018), Crack Detection of Concrete Structure Using Deep Learning and Image Processing Method in Geotechnical Engineering, Journal of the korean geotechnical society, Vol.34, No.12, pp.145-154.  https://doi.org/10.7843/KGS.2018.34.12.145
  27. Kim, K. Y. and Yun, T. S. (2019), Evaluation Method of Rock Characteristics using X-ray CT images, Tunnel and Underground Space, Vol.29, No.6, pp.542-557.  https://doi.org/10.7474/TUS.2019.29.6.542
  28. Li, S., Zhao, X., and Zhou, G. (2019), Automatic Pixel-level Multiple Damage Detection of Concrete Structure Using Fully Convolutional Network, Computer-Aided Civil and Infrastructure Engineering, Vol.34, No.7, pp.616-634.  https://doi.org/10.1111/mice.12433
  29. Li, Y. and Zhang, Y. (2015), Quantitative Estimation of Joint Roughness Coefficient Using Statistical Parameters, International Journal of Rock Mechanics and Mining Sciences, Vol.77, pp.27-35.  https://doi.org/10.1016/j.ijrmms.2015.03.016
  30. Long, J., Shelhamer, E., and Darrell, T. (2015), Fully Convolutional Networks for Semantic Segmentation, In Proceedings of the IEEE conference on computer vision and pattern recognition (pp.3431-3440). 
  31. Luo, S., Zhao, Z., Peng, H., and Pu, H. (2016), The Role of Fracture Surface Roughness in Macroscopic Fluid Flow and Heat Transfer in Fractured Rocks, International Journal of Rock Mechanics and Mining Sciences, Vol.87, pp.29-38.  https://doi.org/10.1016/j.ijrmms.2016.05.006
  32. Movassagh, A., Haghighi, M., Zhang, X., Kasperczyk, D., and Sayyafzadeh, M. (2021), A Fractal Approach for Surface Roughness Analysis of Laboratory Hydraulic Fracture, Journal of Natural Gas Science and Engineering, 85. 
  33. Paetsch, O. (2019), Possibilities and Limitations of Automatic Feature Extraction Shown by the Example of Crack Detection in 3D-CT Images of Concrete Specimen, Proceedings of the 9th Conference on Industrial Computed Tomography, Padova, Italy (pp.13-15). 
  34. Ronneberger, O., Fischer, P., and Brox, T. (2015), U-net: Convolutional Networks for Biomedical Image Segmentation, In Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18 (pp.234-241). Springer International Publishing. 
  35. Shimizu, H., Murata, S., and Ishida, T. (2011), The Distinct Element Analysis for Hydraulic Fracturing in Hard Rock Considering Fluid Viscosity and Particle Size Distribution, International Journal of Rock Mechanics and Mining Sciences, Vol.48, No.5, pp.712-727.  https://doi.org/10.1016/j.ijrmms.2011.04.013
  36. Tan, M. and Le, Q. (2019), Efficientnet: Rethinking Model Scaling for Convolutional Neural Networks, In International conference on machine learning, pp.6105-6114. 
  37. Yang, Q. and Ji, X. (2021), Automatic Pixel-Level Crack Detection for Civil Infrastructure Using Unet++ and Deep Transfer Learning, IEEE Sensors Journal, Vol.21, No.17, pp.19165-19175.  https://doi.org/10.1109/JSEN.2021.3089718
  38. Yang, X., Li, H., Yu, Y., Luo, X., Huang, T., and Yang, X. (2018), Automatic Pixel-Level Crack Detection and Measurement Using Fully Convolutional Network, Computer-Aided Civil and Infrastructure Engineering, Vol.33, No.12, pp.1090-1109.  https://doi.org/10.1111/mice.12412
  39. Zhang, A., Wang, K. C. P., Li, B., Yang, E., Dai, X., Peng, Y., Fei, Y., Liu, Y., Li, J. Q., and Chen, C. (2017), Automated Pixel-Level Pavement Crack Detection on 3D Asphalt Surfaces Using a Deep-Learning Network, Computer-Aided Civil and Infrastructure Engineering, Vol.32, No.10, pp.805-819.  https://doi.org/10.1111/mice.12297
  40. Zhou, Z., Rahman Siddiquee, M. M., Tajbakhsh, N., and Liang, J. (2018), Unet++: A nested u-net architecture for medical image segmentation, In Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support: 4th International Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, Proceedings 4, pp.3-11. 
  41. Zhuang, L., Kim, K. Y., Jung, S. G., Diaz, M., and Min, K. B. (2019), Effect of Water Infiltration, Injection Rate and Anisotropy on Hydraulic Fracturing Behavior of Granite, Rock Mechanics and Rock Engineering, Vol.52, No.2, pp.575-589.  https://doi.org/10.1007/s00603-018-1431-3
  42. Zhuang, L., Yeom, S., and Shin, H. S. (2020), Development of Triaxial Cells Operable with In Situ X-ray CT for Hydro-Mechanical Laboratory Testing of Rocks, Journal of the Korean geotechnical society, Vol.36, No.9, pp.45-55.  https://doi.org/10.7843/KGS.2020.36.9.45
  43. Zhuang, L. and Zang, A. (2021), Laboratory Hydraulic Fracturing Experiments on Crystalline Rock for Geothermal Purposes, Earth-Science Reviews, Vol.216, 103580.