• Title/Summary/Keyword: wounding

Search Result 190, Processing Time 0.023 seconds

Physical wounding-assisted Agrobacterium-mediated transformation of juvenile cotyledons of a biodiesel-producing plant, Jatropha curcas L.

  • Khemkladngoen, Naruemon;Cartagena, Joyce A.;Fukui, Kiichi
    • Plant Biotechnology Reports
    • /
    • v.5 no.3
    • /
    • pp.235-243
    • /
    • 2011
  • The non-edible plant Jatropha curcas L. is one of the most promising feedstock for sustainable biodiesel production as it is not a source of edible vegetable oils, produces high amounts of oil (approx. 30-60% in dry seeds) and does not require high-cost maintenance. However, as with other undomesticated crops, the cultivation of J. curcas presents several drawbacks, such as low productivity and susceptibility to pests. Hence, varietal improvement by genetic engineering is essential if J. curcas is to become a viable alternative source of biodiesel. There is to date no well-established and efficient transformation system for J. curcas. In this study, we tested various physical wounding treatments, such as sonication and sand-vortexing, with the aim of developing an efficient Agrobacterium-mediated transformation for J. curcas. The highest stable transformation rate (53%) was achieved when explants were subjected to 1 min of sonication followed by 9 min of shaking in Agrobacterium suspension. The transformation frequency achieved using this protocol is the highest yet reported for J. curcas.

Effects of Wounding and Inoculation Time on Agrobacterium -mediated Transformation in Capsicum annuum L. (상처처리와 접종시간이 Agrobacterium에 의한 고추 형질전환에 미치는 영향)

  • Jeon, Young-Ju;Park, Young-Doo;Choi, Geun-Won
    • Horticultural Science & Technology
    • /
    • v.18 no.6
    • /
    • pp.797-801
    • /
    • 2000
  • The present study was conducted to improve the efficiency of transformation mediated by Agrobacterium tumefaciens in hot pepper. Both regeneration ratio and transformation frequency after the cocultivation with A. tumefaciens were affected by inoculation time and artificial wounding. Transformation frequency was increased over 50% by combining artificial wounding with 120 s of inoculation treatment. Confirmation for the transformation of regenerated shoots was carried out by histochemical ${\beta}$-glucuronidase assay and polymerase chain reaction analysis using npt II primer.

  • PDF

A novel excisional wound pain model for evaluation of analgesics in rats

  • Parra, Sergio;Thanawala, Vaidehi J.;Rege, Ajay;Giles, Heather
    • The Korean Journal of Pain
    • /
    • v.34 no.2
    • /
    • pp.165-175
    • /
    • 2021
  • Background: Management of pain from open wounds is a growing unmet healthcare need. However, the models available to study pain from wounds or to develop analgesics for the patients suffering from them have primarily relied on incisional models. Here, we present the first characterized and validated model of open wound pain. Methods: Unilateral full-skin excisional punch biopsy wounds on rat hind paws were evaluated for evoked pain using withdrawal responses to mechanical and thermal stimulation, and spontaneous pain was measured using hind paw weight distribution and guarding behavior. Evaluations were done before wounding (baseline) and 2-96 hours post-wounding. The model was validated by testing the effects of buprenorphine and carprofen. Results: Pain responses to all tests increased within 2 hours post-wounding and were sustained for at least 4 days. Buprenorphine caused a reversal of all four pain responses at 1 and 4 hours post-treatment compared to 0.9% saline (P < 0.001). Carprofen decreased the pain response to thermal stimulation at 1 (P ≤ 0.049) and 4 hours (P < 0.011) post-treatment compared to 0.9% saline, but not to mechanical stimulation. Conclusions: This is the first well-characterized and validated model of pain from open wounds and will allow study of the pathophysiology of pain in open wounds and the development of wound-specific analgesics.

Effect of Sodium Hydrosulfite Solution on Agrobacterium-Mediated Chinese Cabbage Transformation and Transient Expression

  • Park Hee-Sung;Shin Dong-Il
    • Journal of Plant Biotechnology
    • /
    • v.7 no.4
    • /
    • pp.219-223
    • /
    • 2005
  • We investigated chemical-wounding effect on Agrobacterium-mediated Chinese cabbage transformation via vacuum infiltration. Pre-germinated or germinating Chinese cabbage seeds were infiltrated with Agrobacterium tumefaciens LBA4404 cells carrying either GUS gene (pBI121) or hepatitis B virus surface antigen DNA (pBIHBsAg). Prior to agroinfiltration process, the seeds were soaked in sodium hydrosulfite (SHS) solution or just in sterile water as a control. Comparative transformation efficiency was determined by both of histochemistry and ELISA. We could demonstrate that SHS solution treatment especially to 1-day or 2-days old germinating seeds efficiently improved transformation process, and therefore, transient expression level. This strongly indicated that Agrobacterium infection could be facilitated indeed by SHS-causing wounds on Chinese cabbage seeds.

Molecular Cloning and Characterization of a Lipocalin in the Bumblebee Bombus Ignitus

  • Hu, Zhigang;Yoon, Hyung-Joo;Sohn, Hung-Dae;Jin, Byung-Rae
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.19 no.2
    • /
    • pp.229-235
    • /
    • 2009
  • We have cloned and characterized a lipocalin from the bumblebee Bombus ignitus (Bi-lipocalin). The Bi-lipocalin gene spans 2284 bp and consists of four exons coding for 270 amino acid residues. Sequence analysis revealed that Bi-lipocalin possesses three structurally conserved regions (SCTs) that characterize lipocalins. Recombinant Bi-lipocalin, expressed as a 37 kDa protein in baculovirus-infected insect cells, was N-glycosylated, indicating that the carbohydrate moieties are necessary for secretion. Tissue distribution analysis revealed ubiquitous expression of Bi-lipocalin in all tissues examined. Bi-lipocalin transcripts were upregulated by stress, such as wounding, $H_2O_2$ exposure, and external temperature shock. These results indicate that Bi-lipocalin is a stress-inducible protein that acts on wounding, $H_2O_2$ overexposure and temperature stimulation.

Detection of Wound-inducible Trans-Cinnamic Acid-4-Hydroxylase in Avocado, Persea americana, Roots

  • Joo, Eun-Young
    • Preventive Nutrition and Food Science
    • /
    • v.2 no.4
    • /
    • pp.333-337
    • /
    • 1997
  • Trans-cinnamic acid-4-hydroxylase(tC4H) is the first cytochrome P450-dependent monooxygenase of the phenylpropanoid pathway. The roots of avocado seedlings were wounded and examined to determine whether the tC4H would be activated in response to wounding and/or whether tC4H activity be modulated by the application of exogenous p-coumarate. At the specified length of times, the wounded and treated roots were either frozen in liquid nitrogen or used immediately to extract microsomal proteins. The microsomal proteins were subjected to immunoblot analysis using polyclonal antibodies against CYP73 of tC4H gene. In this study, tC4H was induced in wounded roots sealed in bags within 6 hours, and in low level({TEX}$10^{-8}${/TEX}M) of p-coumarate solution within 24 hours, whereas the olution without p-coumarate and high levels of p-coumarate solution repressed tC4H induction in wounded roots. These results indicate that tC4H is induced by wounding in the root of avocado, and is inhibited by the application of exogenous p-coumarate.

  • PDF

Increase in 3-Hydroxy-3-Methylglutarly Coenzyme A Reductase mRNA Level in Tomato by Fungal Elicitors and Mechanical Wounding (Fungal Elicitor와 기계적 상해에 의한 토마토 HMGR mRNA 증가)

  • 박희성;이용세
    • Korean Journal Plant Pathology
    • /
    • v.12 no.3
    • /
    • pp.285-290
    • /
    • 1996
  • 3-hydroxy-3-methyglutaryl coenzyme A reductase (HMGR)는 phytoalexin을 포함하는 수 많은 isoprenoid화합물의 생합성을 조절하는 효소이다. 토마토의 경우 sesquiterpenoid phytoalexin류가 식물방어를 위한 반응산물로서 축적되는 것이 알려져 있다. Verticil-lium albo-atrum이나 Fusarium oxysporum으로부터 추출한 elicitor를 토마토의 배양세포에 처리하는 경우 처리량의 증가에 따른 2.7kb 크기의 HMGR mRNA의 상당한 유도증가가 토마토의 HMG2 DNA를 이용한 northern hybridization에 의해 관찰되었다. 토마토의 잎, 뿌리, 줄기 등에 기계적 상해를 가하는 경우에서도 HMGR mRNA는 2단계를 걸쳐 증가함이 관찰되었다. HMGR mRNA는 양 실험의 경우 모두 9시간에서 12시간 사이에서 최대발현됨이 관찰되었다.

  • PDF

Molecular Cloning and Characterization of Soybean Cinnamoyl CoA Reductase Induced by Abiotic Stresses

  • So, Hyun-Ah;Chung, Eun-Sook;Cho, Chang-Woo;Kim, Kee-Young;Lee, Jai-Heon
    • The Plant Pathology Journal
    • /
    • v.26 no.4
    • /
    • pp.380-385
    • /
    • 2010
  • Suppression subtractive hybridization was used to isolate wound-induced genes from soybean. One of the wound-induced genes, gmwi143 designated as GmCCR, showed high homology with genes encoding cinnamoyl-CoA reductase (CCR; EC 1.2.1.44). Deduced amino acid sequences encoded by GmCCR showed the highest identity (77%) with those of Acacia CCR. There are 2 CCR genes highly homologous to GmCCR in soybean genome based on Phytozome DB analysis. RNA expression of GmCCR was specifically induced by local and systemic wounding, drought, high salinity or by ultraviolet stress. Our study suggests that GmCCR may be involved in resistance mechanism during abiotic stresses in plants.

Development of Transient Gene Expression System using Seedlings

  • Choi, Jang-Won;Park, Hee-Sung
    • Journal of agriculture & life science
    • /
    • v.45 no.6
    • /
    • pp.193-199
    • /
    • 2011
  • An efficient transient expression system has been developed and characterized for the production of foreign genes in seedlings. The seedlings can be easily produced from commercial seeds used for vegetable sprouts. In principal, a chemical abrasive was employed to generate wounds in seedlings prior to vacuum-infiltration with Agrobacterium tumefaciens bearing the target gene. This optimized chemical wounding-assisted agro-infiltration process resulted in up to 15-fold increase in $\beta$-glucuronidase (GUS) enzyme activity. This procedure has been used efficiently to express hepatitis B surface antigen (HBsAg) protein in a transient mode. Therefore, seedlings with proper wounds can be suggested as a convenient tool for the production of useful recombinant proteins.