Browse > Article

Development of Transient Gene Expression System using Seedlings  

Choi, Jang-Won (Dept. Bio-Industry, Daegu Univ.)
Park, Hee-Sung (Dept. Biotechnology, Catholic Univ. of Daegu)
Publication Information
Journal of agriculture & life science / v.45, no.6, 2011 , pp. 193-199 More about this Journal
Abstract
An efficient transient expression system has been developed and characterized for the production of foreign genes in seedlings. The seedlings can be easily produced from commercial seeds used for vegetable sprouts. In principal, a chemical abrasive was employed to generate wounds in seedlings prior to vacuum-infiltration with Agrobacterium tumefaciens bearing the target gene. This optimized chemical wounding-assisted agro-infiltration process resulted in up to 15-fold increase in $\beta$-glucuronidase (GUS) enzyme activity. This procedure has been used efficiently to express hepatitis B surface antigen (HBsAg) protein in a transient mode. Therefore, seedlings with proper wounds can be suggested as a convenient tool for the production of useful recombinant proteins.
Keywords
Agro-infiltration; GUS; HBsAg; Seedling; Transient expression; Wounding;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Flores Solis, J. I., P. Mlejnek, K. Studena, and S. Prochazka. 2003. Application of sonication-assisted Agrobacterium-mediated transformation in Chenopodium rubrum L. Plant Soil Environ. 49: 255-260.
2 Floros, J. D., H. Y. Wetzstein, and M. S. Chinnan. 1987. Chemical (NaOH) peeling as viewed by scanning electron microscopy: pimiento peppers as a case study. J. Food Sci. 52: 1312-1316.   DOI
3 Hadiji-Abbes, N., I. Borchani-Chabchoub, H. Triki, R. Ellouz, A. Gargouri, and R. Mokdad-Gargouri. 2009. Expression of HBsAg and preS2-S protein in different yeast based system: A comparative analysis. Protein Expr. Purif. 66: 131-137.   DOI   ScienceOn
4 Jefferson, R. A. 1987. Assaying chimeric genes in plants: the gus gene fusion system. Plant Mol. Biol. Rep. 5: 387-405.   DOI   ScienceOn
5 Kim, S. S., D. I. Shin, and H. S. Park. 2007. Transient $\beta$-glucuronidase expression in lily (Lilium longiflorum L.) pollen via wounding-assisted Agrobacteriummediated transformation. Biotechnol. Lett. 29: 965-969.   DOI   ScienceOn
6 Lee, Y. W., S. Jin, W. S. Sim, and E. W. Nester. 1995. Genetic evidence for direct sensing of phenolic compounds by the VirA protein of Agrobacterium tumefaciens. Proc. Natl. Acad. Sci. USA 92: 12245-12249.   DOI   ScienceOn
7 Mason, H. S., D. M. Lam, C. J. Arntzen. 1992. Expression of hepatitis B surface antigen in transgenic plants. Proc. Natl. Acad. Sci. USA 89: 11745-11749.   DOI   ScienceOn
8 Murray, M. G., and W. F. Thompson. 1980. Rapid isolation of high molecular weight plant DNA. Nucl Acid Res 8: 4321-4325.   DOI   ScienceOn
9 Opabode, J. T. 2006. Agrobacterium-mediated transformation of plants: emerging factors that influence efficiency. Biotechnol. Mol. Biol. Rev. 1: 12-20.
10 Rakoczy-Trojanowska, M. 2002. Alternative methods of plant transformation - a short review. Cell. Mol. Biol. Lett. 7: 849-858.
11 Renard, C. M. G. C., Y. Rohou, C. Hubert, G. Della Valle, J. F. Thibault, and J. P. Savina. 1996. Bleaching of apple pomace by hydrogen peroxide in alkaline conditions: Optimisation and characterization of the products. Lebensm. Wiss. Technol. 30: 398-405.
12 Samac, D. A. 1995. Strain specificity in transformation of alfalfa by Agrobacterium tumefaciens. Plant Cell Tiss. Org. Cult. 43: 271-277.
13 Tiollais, P., C. Pourcel, and A. Dejean. 1985. The hepatitis B virus. Nature 317: 489-495.   DOI   ScienceOn
14 Singh, N. and H. S. Chawla. 1999. Use of silicon carbide fibers for Agrobacterium-mediated transformation in wheat. Curr. Sci. 76: 1483-1485.
15 Smith, M. L., H. S. Mason, and M. L. Shuler. 2002. Hepatitis B surface antigen (HBsAg) expression in plant cell culture: Kinetics of antigen accumulation in batch culture and its intracellular form. Biotechnol. Bioeng. 80: 812-822.   DOI   ScienceOn
16 Streatfield, S. J. 2007. Approaches to achieve high-level heterologous protein production in plants. Plant Biotechnol. J. 5: 2-15.   DOI   ScienceOn
17 Tiwari, S., P. C. Verma, P. K. Singh, and R. Tuli. 2009. Plants as bioreactors for the production of vaccine antigens. Biotechnol. Adv. 27: 449-467.   DOI   ScienceOn
18 Zhang, H., Q. Huang, and J. Su. 2010. Development of alfalfa (Medicago sativa L.) regeneration system and Agrobacterium-mediated genetic transformation. Agr. Sci. China. 9: 170-178.   DOI   ScienceOn