• 제목/요약/키워드: workfunction variation

검색결과 4건 처리시간 0.02초

Computing-Inexpensive Matrix Model for Estimating the Threshold Voltage Variation by Workfunction Variation in High-κ/Metal-gate MOSFETs

  • Lee, Gyo Sub;Shin, Changhwan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제14권1호
    • /
    • pp.96-99
    • /
    • 2014
  • In high-${\kappa}$/metal-gate (HK/MG) metal-oxide-semiconductor field-effect transistors (MOSFETs) at 45-nm and below, the metal-gate material consists of a number of grains with different grain orientations. Thus, Monte Carlo (MC) simulation of the threshold voltage ($V_{TH}$) variation caused by the workfunction variation (WFV) using a limited number of samples (i.e., approximately a few hundreds of samples) would be misleading. It is ideal to run the MC simulation using a statistically significant number of samples (>~$10^6$); however, it is expensive in terms of the computing requirement for reasonably estimating the WFV-induced $V_{TH}$ variation in the HK/MG MOSFETs. In this work, a simple matrix model is suggested to implement a computing-inexpensive approach to estimate the WFV-induced $V_{TH}$ variation. The suggested model has been verified by experimental data, and the amount of WFV-induced $V_{TH}$ variation, as well as the $V_{TH}$ lowering is revealed.

TCO Workfunction Engineering with Oxygen Reactive Sputtering Method for Silicon Heterojunction Sola Cell Application

  • 봉성재;김선보;안시현;박형식;이준신
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.492-492
    • /
    • 2014
  • On account of the good conductivity and optical properties, TCO is generally used in silicon heterojunction solar cell since the emitter material, hydrogenated amorphous silicon (a-Si:H), of the solar cell has low conductivity compare to the emitter of crystalline silicon solar cell. However, the work function mismatch between TCO layer and emitter leads to band-offset and interfere the injection of photo-generated carriers. In this study, work function engineering of TCO by oxygen reactive sputtering method was carried out to identify the trend of band-offset change. The open circuit voltage and short circuit current are noticeably changed by work function that effected from variation of oxygen ratio.

  • PDF

이종금속으로 샌드위치된 고분자의 단락전류에 관한 연구 (The Stydy on Short-circuit Current of Polymeric Material Sandwitched by Two Different Kinds of Metal)

  • 이덕출;이능헌
    • 대한전기학회논문지
    • /
    • 제35권2호
    • /
    • pp.67-76
    • /
    • 1986
  • It is observed that an appreciable short-circuit current (Is) flows by the time variation of temperature without applying external field in M1(metal)-P(polymer)-M2(metal)system. In M1-P-M2(A1) system, Is flows in the direction from the electrode(A1) having a lower workfunction to the counter electrode(M1) during heating and its magnitude increases as the thickness of polymer is decreased and as the heating rate is raised. The sign of Is is reversed in lower temperature region (under glass transition temperature) when the direction of temerature variation is changed during heating and cooling. From these experimental results, we can sugest that Is flows in the external short-circuit during the space charge distribution formed around both interfacial surfaces (M1-P and P-M2) is continuously maintained in the non-equilibrium state but not in equilibrium state.

  • PDF

Short Channel Analytical Model for High Electron Mobility Transistor to Obtain Higher Cut-Off Frequency Maintaining the Reliability of the Device

  • Gupta, Ritesh;Aggarwal, Sandeep Kumar;Gupta, Mridula;Gupta, R.S.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제7권2호
    • /
    • pp.120-131
    • /
    • 2007
  • A comprehensive short channel analytical model has been proposed for High Electron Mobility Transistor (HEMT) to obtain higher cut-off frequency maintaining the reliability of the device. The model has been proposed to consider generalized doping variation in the directions perpendicular to and along the channel. The effect of field plates and different gate-insulator geometry (T-gate, etc) have been considered by dividing the area between gate and the high band gap semiconductor into different regions along the channel having different insulator and metal combinations of different thicknesses and work function with the possibility that metal is in direct contact with the high band gap semiconductor. The variation obtained by gate-insulator geometry and field plates in the field and channel potential can be produced by varying doping concentration, metal work-function and gate-stack structures along the channel. The results so obtained for normal device structure have been compared with previous proposed model and numerical method (finite difference method) to prove the validity of the model.