In recent years, artificial intelligence, especially object detection-based deep learning in computer vision, has made significant advancements, driven by the development of computing power and the widespread use of graphic processor units. Object detection-based deep learning techniques have been applied in various fields, including the medical imaging domain, where remarkable achievements have been reported in disease detection. However, the application of deep learning does not always guarantee satisfactory performance, and researchers have been employing trial-and-error to identify the factors contributing to performance degradation and enhance their models. Moreover, due to the black-box problem, the intermediate processes of a deep learning network cannot be comprehended by humans; as a result, identifying problems in a deep learning model that exhibits poor performance can be challenging. This article highlights potential issues that may cause performance degradation at each deep learning step in the medical imaging domain and discusses factors that must be considered to improve the performance of deep learning models. Researchers who wish to begin deep learning research can reduce the required amount of trial-and-error by understanding the issues discussed in this study.
서비스 지향 개발에서 서비스 식별은 워크플로우, 목표와 시나리오, 유스케이스, 컴포넌트, 휘처, 패턴 등에 기반해서 이루어져 왔다. 그러나, 비즈니스 가치 관점에서 의미적 접근에 의한 서비스의 식별은 아직 구체화되어 있지 않다. 본 논문은 비즈니스 서비스 식별의 정확성을 향상시키기 위하여, XL-BPMN 모델 대상의 구조적 및 의미적 분석에 의한 비즈니스 서비스를 식별하는 방법을 제시한다. 비즈니스 시나리오에 기반해서 비즈니스 프로세스들을 식별하고, 이 프로세스는 XL-BPMN 비즈니스 프로세스 모델로 디자인한다. 이 비즈니스 프로세스 모델에서, 액티비티들간 구조적 패턴과 속성 기반 의미적 유사성의 통합된 분석 결과에 의해 밀접한 액티비티를 바인딩해서 단위 비즈니스 서비스를 식별한다. 이를 통해, 상위 비즈니스 가치 관점의 XL-BPMN 모델을 통한 정확성과 모듈성이 높은 단위 비즈니스 서비스 식별을 할 수 있다. 식별된 서비스의 재사용을 통해서 서비스 지향 개발을 더욱 가속화를 도모할 수 있을 것이다.
오프라인에서 사진을 촬영하는 포토부스는 자신이 원하는 포즈와 소품 등을 통해 자연스럽게 나다운 모습을 촬영할 수 있으며, 함께한 사람들과 추억을 공유하는 특별한 경험을 선사한다. 최근 다양한 표현을 가능하게 하고자 생성형 AI를 활용한 포토부스 사례들이 등장했다. 그러나 기존 AI 포토부스는 단체 사진 촬영이 불가능하고, 대부분 사용자의 포즈를 반영하지 못하며, 개별 인물마다 다른 컨셉을 적용하기 어려운 한계가 존재한다. 본 연구는 이러한 문제를 해결하여 사용자가 자유롭게 포즈와 위치, 컨셉을 선택하여 촬영할 수 있는 AI 포토부스 시네마픽을 제안한다. 인물별 개별 컨셉 적용을 위해 개별 생성 워크플로우를 전처리, 생성, 후처리 세 단계로 설계하고, 이를 실제 프로토타입으로 구현했다. 이 과정에서 인물별 투명 이미지 생성, 배경 생성 후 합성시 발생하는 아티팩트를 줄이는 재생성 테크닉, 최적화 모델 적용 및 GPU 병렬화 등 다양한 방식을 워크플로우에 통합하여 한계점을 극복하였다. 사용자 품질 평가와 약 400명의 사용자를 대상으로 대규모 시범 운영을 통해 시스템의 효과성을 검증했다. 그 결과, 사용자들은 기존 방식에 비해 높은 선호도를 보였으며, 이를 통해 실제 포토부스로의 도입 가능성을 확인했다. 본 연구에서 제안하는 AI 포토부스 시네마픽은 더욱 창의적이고 차별화된 시장을 개척할 수 있을 것으로 기대하며, 앞으로 다양한 응용 분야에서 널리 활용될 것으로 기대된다.
Needle detection in ultrasound images is sometimes difficult due to obstruction of fat tissues. Accurate needle detection using continuous ultrasound (CUS) images is a vital stage of treatment planning for tissue biopsy and brachytherapy. The main goal of the study is classified into two categories. First, new detection model, i.e. D-Attention Unet, is developed by combining the context information of 3D medical data and CUS images. Second, the D-Attention Unet model was compared with other models to verify its usefulness for needle detection in continuous ultrasound images. The continuous needle images taken with ultrasonic waves were converted into still images for dataset to evaluate the performance of the D-Attention Unet. The dataset was used for training and testing. Based on the results, the proposed D-Attention Unet model showed the better performance than other 3 models (Unet, D-Unet and Attention Unet), with Dice Similarity Coefficient (DSC), Recall and Precision at 71.9%, 70.6% and 73.7%, respectively. In conclusion, the D-Attention Unet model provides accurate needle detection for US-guided biopsy or brachytherapy, facilitating the clinical workflow. Especially, this kind of research is enthusiastically being performed on how to add image processing techniques to learning techniques. Thus, the proposed method is applied in this manner, it will be more effective technique than before.
KSII Transactions on Internet and Information Systems (TIIS)
/
제5권9호
/
pp.1544-1572
/
2011
Task placement and scheduling are traditionally studied in following aspects: resource utilization, application throughput, application execution latency and starvation, and recently, the studies are more on application scalability and application performance. A methodology for task placement and scheduling centered on tasks based on virtual machines is studied in this paper to improve the performances of systems and dynamic adaptability in applications development and deployment oriented parallel computing. For parallel applications with no real-time constraints, we describe a thought of feature model and make a formal description for four layers of task placement and scheduling. To place the tasks to different layers of virtual computing systems, we take the performances of four layers as the goal function in the model of task placement and scheduling. Furthermore, we take the personal preference, the application scalability for a designer in his (her) development and deployment, as the constraint of this model. The workflow of task placement and scheduling based on virtual machines has been discussed. Then, an algorithm TPVM is designed to work out the optimal scheme of the model, and an algorithm TEVM completes the execution of tasks in four layers. The experiments have been performed to validate the effectiveness of time estimated method and the feasibility and rationality of algorithms. It is seen from the experiments that our algorithms are better than other four algorithms in performance. The results show that the methodology presented in this paper has guiding significance to improve the efficiency of virtual computing systems.
The behavioral and dynamic implications of an ERP implementation/installation are, to say the least, not well understood. Getting the switches set to enable the ERP software to go live is becoming straightforward. The really difficult part is understanding all of the dynamic interactions that accrue as a consequence. Dynamic causal and connectionist models are employed to facilitate an understanding of the dynamics and to enable control of the information-enhanced processes to take place. The connectionist model ran be analyzing (behind the scenes) the information accesses and transfers and coming If some conclusions about strong linkages that are getting established and what the behavioral implications of those new linkages and information accesses we. Ultimately, the connectionist model will come to an understanding of the dynamic, behavioral implications of the larger ERP implementation/installation per se. The underlying connectionist model will determine information transfers and workflow. Once a map of these two infrastructures is determined by the model, it becomes a relatively easy job for an analyst to suggest improvements in both. Connectionist models start with analog object structures and then use learning to produce mechanisms for managerial problem diagnoses. These mechanisms are neural models with multiple-layer structures that support continuous input/output. Based on earlier work performed and published by the author[10][11], a Connectionist ReasOning and LEarning System(CROLES) is developed that mimics the real-world reasoning infrastructure. Coupled with an explanation subsystem, this system can provide explanations as to why a particular reasoning structure behaved the way it did. Such a system operates in the backgmund, observing what is happening as every information access, every information response coming from each and every intelligent node (whether natural or artificial) operating within the ERP infrastructure is recorded and encoded. The CROLES is also able to transfer all workflows and map these onto the decision-making nodes of the organization.
건설 산업이 대형화 복잡화 되어감에 따라 사업 전체의 업무 절차를 파악하고, 요구되는 다양한 정보들을 제공하는 데 어려움이 많아지고 있다. 이에 따라 기존에 정비 제조 분야에서 업무 정보를 제공하기 위하여 사용되고 있는 IETM(대화형 전자매뉴얼; Interactive Electornic Technical Manual)을 건설 산업에 도입한 건설 전자매뉴얼을 통해 사업정보 관리를 지원하려는 연구가 진행되고 있다. 하지만 건설 사업의 경우 사업 환경의 변화에 따른 관련 정보의 변경이 빈번하게 발생하므로, 관리자가 매번 변경된 정보를 수집하고 조직화하는 작업을 수행하기에는 작업 빈도가 높고 정보의 수집이 어렵다는 문제점이 발생한다. 이에 본 연구에서는 건설 전자매뉴얼의 정보 관리 주체를 관리자에서 사용자 전체로 확대하여 정보를 실시간으로 재구성하는 집단지성 개념을 활용한 정보 관리 모델을 제안하고, 이를 도시환경정비사업의 전자매뉴얼에 적용하여 활용 가능성을 검증하고자 한다.
본 연구에서는 코딩없이 인공지능 학습 모델을 개발할 수 있는 클라우드 기반의 버텍스 AI 플렛폼을 이용하여 비전문가인 일반인들이 손쉽게 인공지능 학습 모델을 개발하였고 임상적 적용가능성을 확인하였다. 학습용 데이터는 캐글 사이트에 공개된 총9개 치과 질환, 2,999장 치근병 X선 영상을 사용하였고, 무작위로 학습, 검증 및 테스트 데이터 이미지를 분류하였다. 버텍스 AI의 기본 학습모델 워크플로우에서 학습 파이프라인을 사용하여 하이퍼 파라미터 조정작업을 통해 영상분류, 멀티레이블 학습을 수행하였다. Auto ML을 수행한 결과 AUC가 0.967, 정밀도는 95.6%, 재현율은 95.2%로 나타났으며, 학습된 인공지능 모델이 임상적 진단에 충분한 의미가 있음을 확인하였다.
International Journal of Aeronautical and Space Sciences
/
제14권1호
/
pp.30-45
/
2013
The present work focuses on the unsteady aerodynamics and aeroelastic properties of a small-medium sized wind-turbine blade operating under ideal conditions. A tapered/twisted blade representative of commercial blades used in an experiment setup at the National Renewable Energy Laboratory is considered. The aerodynamic loads are computed using Computational Fluid Dynamics (CFD) techniques. For this purpose, FLUENT$^{(R)}$, a commercial finite-volume code that solves the Navier-Stokes and the Reynolds-Averaged Navier-Stokes (RANS) equations, is used. Turbulence effects in the 2D simulations are modeled using the Wilcox k-w model for validation of the CFD approach. For the 3D aerodynamic simulations, in a first approximation, and considering that the intent is to present a methodology and workflow philosophy more than highly accurate turbulent simulations, the unsteady laminar Navier-Stokes equations were used to determine the unsteady loads acting on the blades. Five different blade pitch angles were considered and their aerodynamic performance compared. The structural dynamics of the flexible wind-turbine blade undergoing significant elastic displacements has been described by a nonlinear flap-lag-torsion slender-beam differential model. The aerodynamic quasi-steady forcing terms needed for the aeroelastic governing equations have been predicted through a strip-theory based on a simple 2D model, and the pertinent aerodynamic coefficients and the distribution over the blade span of the induced velocity derived using CFD. The resulting unsteady hub loads are achieved by a first space integration of the aeroelastic equations by applying the Galerkin's approach and by a time integration using a harmonic balance scheme. Comparison among two- and three- dimensional computations for the unsteady aerodynamic load, the flap, lag and torsional deflections, forces and moments are presented in the paper. Results, discussions and pertinent conclusions are outlined.
선형 공정계획 방법은 1929년 엠파이어 스테이트 빌딩에서 그래픽한 용도로 사용되면서 현재는 다양한 작업 공간, 현장 작업과 조립 작업에 적용되고 있다. 선형 공정계획 상에 동시적인 크리티칼 패스가 발생하면 자원 관리는 작업흐름의 최적화 문제로 연결되어 유연한 작업생산성과 지속적인 자원의 할당을 하기 위해 적용되고 있다. 그러나 선형 공정계획 모델 연구에서 간과하고 있는 선형 공정계획 모델의 작업 관계성을 고려하는 것이 필요하다. 이에 본 연구는 선형 공정계획 모델에 관한 기존 연구를 분석하여 네트워크 공정표의 관계성을 선형 공정표에 적용할 수 있는 방법을 제시한다. 네트워크 공정표를 선형공정표로 변환 시에 발생하는 작업의 관계성을 고찰하고 건축물의 물리적 층수 변화와 같이 작업공간의 변화에 따라 선형 공정표에 반영되어야 할 선형 공정표상의 액티비티의 이동 문제를 고찰하여 네트워크 공정표를 선형 공정표로 호환할 수 있는 시스템 개발을 위한 기초연구를 제공하는 것이 본 연구의 목적이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.