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INTRODUCTION

Recently, deep learning technologies in computer 
vision have rapidly developed owing to the advances in 
and widespread use of graphic processor units optimized 
for parallel operation [1]. Object detection [2] is a deep-
learning task that simultaneously identifies the location 
and label of a target object. Interesting results for object 
detection have been reported in various studies, such as 

Developing and Evaluating Deep Learning Algorithms 
for Object Detection: Key Points for Achieving Superior 
Model Performance
Jang-Hoon Oh*, Hyug-Gi Kim*, Kyung Mi Lee
Department of Radiology, Kyung Hee University Hospital, Kyung Hee University College of Medicine, Seoul, Korea

In recent years, artificial intelligence, especially object detection-based deep learning in computer vision, has made 
significant advancements, driven by the development of computing power and the widespread use of graphic processor units. 
Object detection-based deep learning techniques have been applied in various fields, including the medical imaging domain, 
where remarkable achievements have been reported in disease detection. However, the application of deep learning does not 
always guarantee satisfactory performance, and researchers have been employing trial-and-error to identify the factors 
contributing to performance degradation and enhance their models. Moreover, due to the black-box problem, the 
intermediate processes of a deep learning network cannot be comprehended by humans; as a result, identifying problems in 
a deep learning model that exhibits poor performance can be challenging. This article highlights potential issues that may 
cause performance degradation at each deep learning step in the medical imaging domain and discusses factors that must be 
considered to improve the performance of deep learning models. Researchers who wish to begin deep learning research can 
reduce the required amount of trial-and-error by understanding the issues discussed in this study.
Keywords: Deep learning; Object detection; Diseases with small sizes; Disease subclass; Image modality; Deep learning 
workflow; Data augmentation; Hyperparameter optimization

Received: October 7, 2022   Revised: April 29, 2023
Accepted: May 16, 2023
*These authors contributed equally to this work.
Corresponding author: Kyung Mi Lee, MD, PhD, Department of 
Radiology, Kyung Hee University Hospital, Kyung Hee University 
College of Medicine, 23 Kyungheedae-ro, Dongdaemun-gu, Seoul 
02447, Korea. 
• E-mail: bandilee@khu.ac.kr
This is an Open Access article distributed under the terms of 
the Creative Commons Attribution Non-Commercial License 
(https://creativecommons.org/licenses/by-nc/4.0) which permits 
unrestricted non-commercial use, distribution, and reproduction in 
any medium, provided the original work is properly cited. 

face detection [3], recognition [4], pedestrian detection 
[5], and car detection [6]. Furthermore, object detection 
has been applied in the medical imaging domain, which has 
shown remarkable results in developing models to predict 
lesions, such as brain cancer [7], liver disease [8], and wrist, 
rib, and pediatric skull fractures [9–12] using various imaging 
modalities, such as radiography, computed tomography (CT), 
and magnetic resonance imaging (MRI).

While majority of deep learning studies in the medical 
image domain have demonstrated remarkable results, certain 
approaches have exhibited poor performance [13]. In a 
previous study [14], deep-learning-based false-positive 
reduction demonstrated lower performance than rule-
based false-positive reduction. Performance degradation 
can be caused by various factors, such as insufficient data, 
unoptimized hyper-parameters, or the application of an 
incorrect evaluation strategy. However, it is often difficult 
to understand the cause of poor performance because 
humans cannot understand the intermediate process of 
the deep learning model owing to the black-box problem 
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conduct their research by reducing trial-and-error.

Target Disease Selection

Suitability of Object Detection
Deep learning techniques in medical imaging analysis 

can be categorized into classification, object detection, 
and segmentation. Examples of previous studies that have 
applied these three deep learning methods in medical image 
analysis are summarized in Supplementary Table 1, and 
an example explaining the differences between the three 
methods are shown in Figure 2.

Object detection (Fig. 2A) detects trained objects in 

[15]. Moreover, conducting comparative experiments on 
all variables that can affect deep learning performance has 
practical limitations.

The purpose of this article is to explain and demonstrate 
the key considerations for applying object detection to the 
medical imaging domain across each step of deep learning 
research. These considerations are typically performed 
in the following order: target disease selection, data 
collection, data labeling, deep learning network training, 
and performance evaluation (Fig. 1). We hope that this 
article can help junior researchers who aim to apply object 
detection in the medical image domain to understand the 
potential issues that may occur at each step and efficiently 

Target disease 
selection

Data collection

Data labeling

Network training

Performance evaluation

Fig. 1. Flowchart of the process for deep learning research by applying the issues introduced in this study. The flowchart organizes the 
issues that should be considered when conducting deep learning research in a sequential manner, and categorized into target disease 
selection, data collection, data labeling, network training, and performance evaluation.  2D = two dimensional, 2.5D = two and a half 
dimensional, 3D = three dimensional, CT = computed tomography, MRI = magnetic resonance imaging, E2E = end-to-end
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an image using a bounding box or circle with its class. In 
contrast, the classification method (Fig. 2B) determines the 
class of the entire input image. Object detection offers the 
advantage of being able to identify multiple lesions in an 
image and does not suffer from the multilabel classification 
problem [16]. For example, previous studies have utilized 
object detection methods to detect lesions such as brain 
metastases [17], liver lesions [18], maxillary sinusitis 
[19], and cerebral microbleeds [14,20]. Other studies have 
applied it to identify the location of an object in an image, 
such as facial region [19], wrist region [9], and various 
organs, to extract a patch image. As shown in Figure 2C, 
the segmentation method yields results at the pixel level 
and is suitable for detecting lesions that require pixel-level 
evaluation, such as measuring the volume of the lesion 
[21,22] or supporting a radiotherapy plan. However, the 
cost of labeling is higher than that of the object detection 
method. Therefore, unless an evaluation in units of pixels 
is required, the object detection method is appropriate for 
detecting visible diseases or lesions in images, where the 
evaluation of the location information contained in images 
can help recognize each lesion separately.

Target Disease with a Small Size
Small-object detection is a fundamental challenge in 

computer vision [23]. A small object is defined as an 
object with a size less than or equal to 32 x 32 pixels [24], 
which results in issues such as indistinguishable features, 
low resolution, and limited context information, making it 
difficult to detect the target object [25]. Therefore, using an 
object detection algorithm for detecting diseases with small 

sizes, such as small calcifications and early-stage cancers, 
may result in poor performance. Examples of previous studies 
that demonstrated lower performance on small lesions than 
on large lesions are listed in Table 1 [17,22,26-28]. Zhou et 
al. [17] reported that four deep-learning networks exhibited 
lower sensitivity (10%–40%) in detecting brain metastases 
smaller than 3 mm. In another study on the detection of 
breast calcifications, Akselrod-Ballin et al. [26] reported 
that removing calcifications with radii smaller than 10 
pixels can significantly improve performance. To address the 
challenges of detecting small objects, applying the patch 
process to increase the proportion of lesions in an image 
may improve performance [29]. Moreover, using specialized 
models for small objects, such as M2Det [30], multi-scale 
deconvolutional single-shot detector (SSD) [31], and 
improved faster region-based convolutional neural network 
(R-CNN) for small object detection [32], which have been 
recently published, may enhance the detection of small 
lesions. However, to the best of our knowledge, these models 
have not yet been applied in the medical imaging domain.

Identifying Data Distribution of Subset Groups 
Certain target diseases in the medical imaging domain 

can be sub-classified. For example, maxillary sinusitis can 
be sub-classified into full opacification, air/fluid level, 
cysts, and mucosal thickening [19]; cancer labels can be 
grouped based on lesion size [17]; and metastases can be 
grouped according to their origin. If the object detection 
model is trained with integrated labels, the performance for 
each subclass might vary owing to the differences in the 
lesion features and amount of training data. In addition, the 

Fig. 2. An example showing the differences between object detection, classification, and segmentation. The object detection method (A) 
shows the result with a blue bounding box with the label “BM”, the classification method (B) presents the result with the label “Brain 
Metastases”, and the segmentation method (C) displays the result on the image using a red mask. BM = brain metastases.

Object detection Classification

Brain Metastases

Segmentation

A B C
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integrated performance of the test dataset may be altered 
if the composition of the subclass is different from that 
of the training dataset. If the composition of the subclass 
with lower accuracy is higher in the external validation set, 
the performance may be lower than that of the internal 
validation set, which can be mistakenly considered as 
the result of overfitting (Fig. 3). Therefore, the ratio of the 
subclasses should be verified during the composition of the 
test dataset, and the performance of each subclass must be 
investigated.

Data Collection 

Evaluation of Diminished Performance Owing to 
Insufficient Data

Previous studies that applied the deep learning approach 
used various amounts of data (Supplementary Table 1). A 
deep learning network is trained with features from the data; 
therefore, training with more data can improve performance. 
However, data collection in the medical image domain is 
difficult compared with that in the general image domain, 
and studies that apply deep learning are often performed 
using a limited amount of data. Hence, the question “How 
much data is sufficient?” is commonly asked by researchers 
interested in artificial intelligence, and the amount of 
data required may vary depending on the target disease 
and imaging modality. For example, if the target disease 
has numerous variables, such as various sizes, locations in 
different regions, and varying lesion textures, specifying the 
amount of data required is difficult.

To address this issue, it is possible to evaluate whether the 
data are insufficient. If the target disease is determined and 
a certain amount of data is collected at the initial stage of 
the study, the relationship between the amount of data and 
performance of the deep learning model can be investigated 
by training and evaluating each model while increasing the 
amount of training data (Fig. 4). By estimating the amount 
of data required, a researcher can determine whether the 
amount of data for the study must be increased and how 
much data must be collected. For example, Cho et al. [33] 
investigated the relationship between accuracy and the 
amount of training data. Their estimation results predicted 
98% accuracy for a training data size of 1000 per body class. 

Single-Slice Images Such as Radiographs and Patch 
Process

A radiography image is relatively large compared with 



702

Oh et al.

https://doi.org/10.3348/kjr.2022.0765 kjronline.org

the average size of an image in ImageNet (approximately 
1600–2000 pixels in the horizontal and vertical axes vs. 
approximately 400 x 350 pixels, respectively) [34]. A large 
image size significantly increases the computational power 
required and may also result in a dimensionality problem 
[35]. Additionally, radiographs usually contain a substantial 
portion of background that is unrelated to the diagnosis of 
the disease. Applying the patch process, which crops only 
the essential part of the image, can produce a cropped image 
without the loss of lesion information owing to shrinking, 
and unnecessary parts, such as the background, can be 
removed. However, the patch process has traditionally been 
performed by humans. In the medical imaging domain, 
certified radiologists or other medical doctors performed the 
manual patch process, which is time-consuming. As a result, 
the associated costs are considerably high.

Recently, an automated patch process was applied in the 
medical imaging domain by employing the object detection 
approach to address the disadvantages of large images, such 
as radiographs. Table 2 lists previous studies that used a 
manual patch process or applied deep learning approaches 
[9,19,36-42]. Previous studies [9,19,39-42] have applied an 

Internal dataset

ACC 81.8%

ACC 62.4%

ACC 94.8%

ACC 58.9%

ACC 93.6%

Maxillary sinusitis

Cyst

Full opacification

ACC 72.8%

Internal datasetExternal dataset External dataset

Overfitting problem? Data imbalance issue for subclass
A

B C D E

Fig. 3. Simple example of the data imbalance issue for a subclass. A: The scenario where subclass data imbalance can be misinterpreted 
as overfitting. (B-E) The predicted results of the object detection model for cyst cases, which are a subclass of sinusitis. The sample 
images for the internal (B, C) and external (D, E) datasets indicate ground truth and predicted results as blue and yellow bounding 
boxes, respectively. ACC = accuracy
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Fig. 4. Relationship between the amount of data and performance 
of the object detection deep learning network for brain 
metastases. The black dots represent the number of data used 
for model training and their corresponding sensitivity. The blue 
dashed line represents the trend line of the black dots, and the 
black dashed line represents the number of data required to 
achieve a 95% sensitivity. The results, shown as a logarithmic 
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automated patch process based on deep learning or machine 
learning approaches, such as facial region detection [19], 
phantom region detection [42], radius location identification 
[9], and mass detection [40], as pre-processing to limit 
the area of the disease location, reducing the loss of 
lesion information caused by shrinking and removing the 
background that is unrelated to the disease.

Multi-Slice Images Such as CT or MRI
CT and MRI scans involve acquiring a multi-slice image 

instead of a single image and using 2D, 2.5D, or 3D methods 
depending on the type of image input required for the deep 
learning model. Compared with the 3D method, a 2D-based 
deep learning network can be used with a larger image 
as an input, for example, 256 x 256 or 512 x 512 images 
[14,17]. However, besides extremely small lesions, most 
target lesions are located over multiple image slices. The 
2D deep learning model predicts the lesion in each image 
individually; therefore, to evaluate the lesion on a mass unit, 
post-processing that evaluates the lesion in an adjacent 
slice as a mass must be performed [18]. The 3D method has 
the advantage that it can train a deep learning model using 
more information from adjacent slices, and its performance 
can be improved. The disadvantage of the 3D method is that 
it requires a significant amount of computational power; 
therefore, small-sized input data are generally used [43]. The 
2.5D method uses a 2D-based deep learning model in three 
orthogonal directions—coronal, sagittal, and axial—and 
can improve the performance of a deep learning algorithm 
through a majority decision step with three deep learning 
networks. However, the labeling process must be performed 
for all three directions, and post-processing for labeling 
must be performed to apply the label to all three directions. 
Moreover, a majority decision step must be performed during 
additional post-processing [44]. 

Single- and Multi-Channel Input Data
Special imaging techniques, such as dual-energy CT 

[45] and MRIs with multiple different sequences [46], 
have made it possible to acquire the same images with 
different intensities. Examples of previous studies that have 
investigated multi-channel input data for the deep-learning 
approach are listed in Table 3 [47-51]. Using images with 
different intensities as multi-channel input data, the deep 
learning model can be trained with more data and patterns, 
and its performance can be improved [49]. For example, 
if images before and after using a contrast agent are used 

as a multichannel input, the performance of the deep 
learning model can be improved by recognizing the intensity 
differences before and after using the contrast agent [52]. 

However, using multi-channel data for performance 
improvement does not guarantee a statistically significant 
difference [48]. In a scenario where a model is being 
developed for detecting lesions, if images that are not 
related to the diagnosis of the lesion are included in the 
multi-channel input data, the required computational power 
increases, which increases the dimension of the data. This, 
in turn, may lead to a decrease in the performance of the 
deep learning network [47]. Therefore, researchers who aim 
to utilize multi-channel data in developing deep learning 
models should exclude unnecessary data during the data 
collection process and evaluate the performance using data 
that can affect the performance.

Data Labeling

Labeling Verification for Ambiguous Objects
Object detection requires training with the correct labels, 

and its performance may decrease when the training data 
include noisy or incorrect labels. According to Rolnick et 
al. [53], the performance of a classification model using 
the ImageNet dataset with 5% incorrect labels decreases by 
approximately 20%. 

In the medical imaging domain, the labeling process is 
typically performed by a radiologist, and most lesions are 
clearly labeled. However, several lesions may be ambiguous 
to diagnose or label, and using labels for ambiguous 
lesions in training and evaluation can lead to performance 
degradation. This degradation can be overcome by verifying 
ambiguous labels. Verification can be performed by 
comparing with other imaging modalities or biopsy results, 
and labels can be determined by aggregating the opinions 
of several raters, which reduces ambiguity. In a previous 
study, Kim et al. [37] used paranasal sinus CT scans as 
the reference standard for sinusitis to compare the overall 
diagnostic performance of a deep-learning algorithm with 
that of radiologists. In another study [54], subtype labels 
were confirmed by the pathological examination of surgically 
removed tumors to diagnose kidney cancer.

Labeling Small Objects
In object detection, the labeling process is typically 

performed by drawing a bounding box or circle around a 
target object. For small objects, such as cerebral microbleeds 
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or cancers less than 3 mm in size, the size of the label box 
is significantly small. The intersection over union (IoU) [55] 
in the small label box can be easily decreased, even with 
a difference of 1–2 pixels between the ground truth and 
prediction results (Fig. 5). In Figure 5B, the IoU decreased 
to 0.485 owing to the upward movement of the prediction 
box by two pixels. If an IoU of 0.5 is used as the threshold 
for a true positive, it will not be evaluated as a true positive 
even if the prediction box includes the lesion. Therefore, 
when the labeling process is performed for small objects, 
the stability of the IoU can be improved by labeling a large 
area that includes a sufficient area around the lesion. In the 
study of [47], to detect cerebral microbleeds based on a deep 
learning approach, a bounding box with a size of 20 x 20 was 
applied for the labeling process, which included a sufficient 
area around the cerebral microbleeds.

Network Training

Object Detection Networks
Object detection architectures have been continuously 

developed, and several review papers have described their 
progress from early models to state-of-the-art technologies 
[56-58]. Therefore, this article does not provide a detailed 
description of each model. Instead, this article briefly 
describes the classification of object detection architectures 
into 2-stage and 1-stage detectors, and a brief description 
of several object detection models is presented. Table 4 
summarizes the performance of some well-known object 
detection architectures [2,59-69].

The 2-stage detector performs localization and 
classification separately, whereas the 1-stage detector 
performs them simultaneously. Generally, a 2-stage detector 

is recognized for achieving higher accuracy but lower speed. 
The R-CNN family is a representative 2-stage detector. The 
R-CNN [59] was the first model to apply a CNN to object 
detection and consists of region proposal (selective search), 
feature vector acquisition using a CNN, class classification 
using a support vector machine, and bounding box 
regression. However, R-CNN has the disadvantage of long 
training time owing to the multiple stages of learning. To 
improve this, a fast R-CNN [2] with a region of interest 
pooling and faster R-CNN [62] with a region proposal 
network were developed. Although not in the R-CNN family, 
the region-based fully convolutional network (R-FCN) model 
[65], which performs position-sensitive pooling using 
position-sensitive score maps, showed similar performance 
to the faster R-CNN but was 2.5 to 20 times faster. Moreover, 
the feature pyramid network (FPN) [64], which employs 
a method for recognizing target objects of various sizes, 
and mask R-CNN [63], which adds a mask branch to enable 
instance segmentation in the bounding box, have been 
introduced.

For real-time screening, a 1-stage detector, which has the 
advantage of high speed, is appropriate. It is known that 
the 1-stage detector shows lower performance than the 
2-stage detector. However, owing to recent developments 
in the 1-stage detector, its accuracy has become similar to 
that of the 2-stage detector. The you only look once (YOLO) 
family is a representative 1-stage detector. YOLO [66], which 
is the first introduced model, redefines localization and 
classification, which are separately performed in a 2-stage 
detector, as a single-regression problem. Consequently, a 
single neural network predicts the bounding box and class 
probability using a single process. However, the YOLO model 
exhibits a lower mean average precision (mAP) value with 

A B C D

Fig. 5. Example of intersection over union (IoU) degradation with different boundary box sizes for small-object detection. The ground 
truth and predicted results are represented by blue and green boundary boxes, respectively. The IoU for the small bounding boxes (A) 
and bounding boxes that include a sufficient area around the lesion (C) was estimated to be 0.605, and 0.614, respectively. For the small 
bounding boxes (B) and bounding boxes that include a sufficient area around the lesion (D), the predicted boundary box was moved 
upward by two pixels and the IoU was estimated to be 0.485, and 0.511, respectively. 
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missing small objects. To overcome the disadvantages of the 
YOLO model, an SSD consisting of a multiscale feature layer 
and default box was proposed [61]. Subsequently, several 
improvements were introduced: YOLO v2 [67] improved 
performance by applying batch normalization and using an 
anchor box; RetinaNet [60] used focal loss to solve the class 
imbalance problem caused by the difference in the number 
of positive/negative samples used during model training; 
YOLO v3 [68] improved performance by using DarkNet53 as 

the backbone architecture and three feature maps; and YOLO 
v4 [69] combined various methods that affect performance.

If there is no time constraint, it is appropriate to select 
2–3 recent and well-known models supported in the 
relevant development environment, compare them, and 
select the model with satisfactory performance. In addition, 
the proposed object detection network can be modified by 
applying models such as VGG-19 [70], ResNet-50 [71], or 
Inception v3 [72] as the backbone.

Table 4. Well-known Object Detection Networks and Their Performances in the Literature

Proposed Model
Region 

Proposal
Trained Dataset Training Time, h Backbone Test Dataset mAP, %

Run-time, 
s

2-stage detector
R-CNN [59] Selective 

search
ILSVRC2012 + 

ILSVRC2013
13 - ILSVRC2013 31.4 60 (CPU)

ILSVRC2012 + 
VOC 2012

- VOC 2010 53.7

- VOC 2007 58.5
OxfordNet VOC 2007 66.0

Fast R-CNN [2] Selective 
search

VOC 2007 + 2012 9.5 VGG16 VOC 2012 70.0 0.3

VGG16 VOC 2010 68.8
VGG16 VOC 2007 68.4

Faster R-CNN [62] RPN VOC 2007 + 2012 
+ COCO

- VGG16 VOC 2012 75.9 0.2

VGG16 VOC 2007 78.8
VGG16 COCO 42.7

R-FCN [65]* RPN VOC 2007 + 2012 
+ COCO

- ResNet101 VOC 2012 82.0 0.42

ResNet101 VOC 2007* 83.6*
ResNet101 COCO 53.2 1

FPN [64] RPN COCO   8 (8 GPUs) ResNet101 COCO 57.1 0.148
Mask R-CNN [63] RPN COCO 44 (8 GPUs) ResNeXt101FPN COCO 60.0 0.2

1-stage detector
YOLO [66] - VOC 2007 + 2012 - - VOC 2012 57.9 0.02

- VOC 2007 63.4
YOLO v2 [67] - ImageNet - Darknet19 VOC 2012 73.4 0.025

Darknet19 VOC 2007 78.6
Darknet19 COCO 44.0

YOLO v3 [68] - - Darknet53 COCO 57.9 0.05
YOLO v4 [69] - COCO - CSPDarknet53 COCO 65.7 0.03
SSD [61]* - VOC 2007 + 2012 

+ COCO
- VGG16 VOC 2012* 82.2*

VGG16 VOC 2007 83.2 0.045
VGG16 COCO 48.5

RetinaNet [60] - COCO 10–35 ResNeXt101FPN COCO* 61.1* 0.198

*The detection networks with the best performance for each test dataset. mAP = mean average precision, R-CNN = region-based 
convolutional neural network, CPU = central processing unit, RPN = region proposal network, R-FCN = region-based fully convolutional 
network, FPN = feature pyramid network, GPU = graphic processor unit, YOLO = you only look once, SSD = single-shot detector 
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Deep Learning Workflow Based on the Diagnostic Process 
Performed by Radiologists

Radiologists are empirically trained in anatomy, 
pathology, imaging techniques, and disease patterns, and 
they make decisions based on their own experiences and 
criteria [73]. However, a deep-learning network is not 
trained with any criteria with anatomical and pathological 
bases, and the weights of each node are adjusted by 
training on a specific dataset. Consequently, a deep-
learning network cannot provide any criteria for its decision, 
and even if a deep-learning network presents a correct 
decision, it may not be accepted if the deep learning model 
does not provide any decision criteria. Therefore, rather 
than simply developing a deep learning network to detect 
disease, one can take a step towards developing a more 
reliable algorithm by understanding each process of disease 
diagnosis performed by a radiologist and applying it in 
similar manner to the deep learning workflow. In this way, 
the deep learning model can present the results of each step 
to the radiologists, helping them to better understand and 
trust the model’s results. 

Previous studies have proposed deep-learning workflows 
that mimic the diagnostic processes of radiologists for 
maxillary sinusitis assessment and mammography phantom 
image evaluation. For the assessment of maxillary sinusitis 
[19], the diagnostic processes of a radiologist include finding 
the facial region, adjusting the window level, increasing the 
contrast difference, diagnosing the lesion, and generating 
a clinical report. These processes were imitated and applied 
to the deep learning workflow in the form of preprocessing, 
facial patch detection, facial region extraction, image 
intensity normalization, maxillary sinusitis detection, and 
detection result generation, which highlights the image with 

a bounding box and a report regarding the original image 
space. Figure 6 shows a diagram that compares the process 
of maxillary sinusitis detection by radiologists and that 
of the deep learning model. For a mammography phantom 
image [42], the evaluation processes of a radiologist include 
finding the phantom region, adjusting the window level 
and width, evaluating each phantom object, summing 
phantom scores for each group according to the guidelines 
of the American College of Radiology digital mammography 
quality control, and generating reports. These processes 
were applied to the deep learning workflow in the form of 
phantom region detection, image intensity normalization, 
phantom object detection that yields location information 
as a bounding box with its group and score, summation of 
each phantom score for each group, and generating reports.

Imaging Data Argumentation 
Data collection in the medical field is often limited, 

and data augmentation is performed to compensate for 
the insufficient amount of data in the training dataset. 
Data augmentation may be applied selectively or randomly 
and includes image processing, such as flipping, rotating, 
translating, and scaling the image size (magnification or 
reduction). The labels in the augmented image are identical 
to those in the original image but with slightly different 
features, thereby allowing the deep learning model to learn a 
wider variety of patterns, which can improve its performance. 
Yadav et al. [74] investigated the effect of data augmentation 
to distinguish pneumonia images from normal images in a 
chest X-ray dataset. They set two different augmentation 
models using different augmentation parameters, and the 
model that included the augmentation parameters of rotation 
range, shear range, zoom range, horizontal flip, and vertical 

Fig. 6. Diagram of the diagnostic process for maxillary sinusitis performed by a radiologist and deep learning workflow that mimics the 
radiologist’s diagnostic process. The upper row represents the diagram of the diagnostic process conducted by a radiologist, while the 
bottom row represents the diagram of the deep learning workflow designed to mimic each step of the radiologist's diagnostic process.
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flip showed better results. Liu et al. [75] trained a deep 
learning network to detect cerebral microbleeds, and their 
data augmentation comprised 3D rotation, translation, 
and random left-to-right flipping to avoid overfitting. In 
a study evaluating the diagnostic performance of deep 
learning networks on panoramic radiographs, Yang et al. 
[76] augmented their training set by applying horizontal and 
vertical flipping, translation, and scaling.

Hyperparameter Optimization 
A hyperparameter [77] that affects the performance of a 

deep learning algorithm is not the main variable optimized 
through the training process but is instead a variable 
that humans set as a priori knowledge before training the 
network. Hyperparameters include the activation function, 
batch size, dropout rate, number of dense nodes, input 
image size, epochs, initial learning rate, and a factor for 
L2 regularization [19,78]. Manual search [79], grid search 
[80], random search [81], and Bayesian optimization are 
known hyperparameter optimization methods. The Bayesian 
optimization method [82,83] uses prior knowledge to 
generate a statistical model based on experimental results, 
and it effectively determines the next search direction for 
the optimal hyperparameters by evaluating the objective 
function [84]. It has the advantage of efficiently finding 
the optimal hyperparameters in a shorter time than random 
or grid searches [85]. In our previous study [19], to 
enhance the performance of the maxillary sinusitis detector, 
Bayesian hyperparameter optimization was applied using the 
following parameters: input image size, number of anchor 
boxes, maximum epochs, initial learning rate, and a factor 
for L2 regularization. Bayesian hyperparameter optimization 
usually attempts to find values of hyperparameters that 
minimize an objective function and to find hyperparameters 
that increase the accuracy during the Bayesian optimization 
process. Ait Amou et al. [78] applied Bayesian optimization 
to obtain optimal hyperparameters for the complete training 
of their model to distinguish brain tumors. The activation 
function, batch size, dropout rate, number of dense nodes, 
and gradient descent optimization function were selected for 
Bayesian hyperparameter optimization, and their accuracy 
was evaluated as an objective function. 

Performance Evaluation 

Quantitative Performance Metric
For the object detection task, IoU, precision, recall, 

average precision (AP), and mAP are mainly used to evaluate 
model performance. IoU is a metric that evaluates how much 
the predicted boxes overlap with the ground-truth bounding 
boxes and can be represented by Eq. (1) The IoU is used as 
a criterion to determine true and false positives and is the 
most popular evaluation metric used for object detection 
[55]. In general image domains, such as the PASCAL VOC [86] 
and MS COCO benchmark challenges [87], the performance 
of object detection models is commonly evaluated using 
a fixed IoU threshold of 0.5 [88] or multiple thresholds 
[62,69]. However, in the medical imaging domain, a fixed 
IoU threshold of 0.5 [89] or lower, such as 0.2 [17], may 
be used, depending on the specific study. However, it is 
also important to ensure that the lesions are included in 
the prediction box of the deep learning model. Precision 
(Eq. (2)) indicates the proportion of true positives among 
the total number of objects predicted by deep learning, and 
recall (Eq. (3)) indicates the proportion of true positives 
among all ground truths. The area under the curve in the 
precision-recall graph is calculated and expressed as an AP 
to quantitatively evaluate the model’s performance [90]. 
The mAP is the mean of the AP values of each target class 
[91], and it is the same as the AP when only one target 
class exists. The false positive rate is calculated by dividing 
the total number of false positives by the number of slices 
or participants. 

IoU = 
|Ground truth ∩ Predicted boxes|

|Ground truth 

∩

 Predicted boxes|
	 Eq. (1)

Precision = True positives
Whole predictions by model

	 Eq. (2)

Recall (Sensitivity) =  True positives
Ground truth

	 Eq. (3)

In a clinical setting, the developed computer-aided 
diagnostic algorithm is often evaluated using sensitivity, 
specificity, and area under the receiver operating 
characteristic (AUROC), which are evaluation metrics for 
distinguishing between normal and abnormal individuals. 
However, from Eq. (2) and (3), the precision and recall for 
the performance evaluation of the object detection model 
are the metrics evaluated in the target object unit. 

To evaluate the performance for distinguishing normal 
and abnormal using the object detection model, secondary 
processing steps, such as considering predictions as normal 
or abnormal according to the presence or absence of the 
prediction result, should be performed. The researcher should 
then evaluate the accuracy, specificity, AUROC, etc.
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Evaluation of Deep Learning Models
In a mammography phantom image evaluation study 

[42], the inter-rater correlation coefficient for the total 
group score of the deep learning model and radiologist 
was 0.54–0.62, which is in the poor-to-acceptable range. 
However, as a result of evaluating each of the 16 phantom 
objects, the agreement between the deep learning model 
and ground truth was low only at the ambiguous point, and 
a similar pattern was observed in the results from humans. 
In previous studies on brain metastasis detection [17], 
although the overall detection sensitivity was 81%, the 
sensitivity for the small metastasis group (< 3 mm) was only 
15%. By not only evaluating the integrated result but also 
investigating the deep learning performance for subclasses, 
researchers can identify deep learning that performs well.

CONCLUSION

In this study, we have addressed the potential challenges 
and important considerations that arise at each step of 
deep learning research when employing object detection 
methods. Although recent studies that have applied deep 
learning have shown remarkable performance, they have not 
always guaranteed the best results. Researchers can more 
efficiently perform deep learning research by identifying 
issues that may pose problems in each step of the research, 
thereby reducing trial-and-error.
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