• Title/Summary/Keyword: work uncertainty

Search Result 386, Processing Time 0.022 seconds

Uncertainty quantification and propagation with probability boxes

  • Duran-Vinuesa, L.;Cuervo, D.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2523-2533
    • /
    • 2021
  • In the last decade, the best estimate plus uncertainty methodologies in nuclear technology and nuclear power plant design have become a trending topic in the nuclear field. Since BEPU was allowed for licensing purposes by the most important regulator bodies, different uncertainty assessment methods have become popular, overall non-parametric methods. While non-parametric tolerance regions can be well stated and used in uncertainty quantification for licensing purposes, the propagation of the uncertainty through different codes (multi-scale, multiphysics) in cascade needs a better depiction of uncertainty than the one provided by the tolerance regions or a probability distribution. An alternative method based on the parametric or distributional probability boxes is used to perform uncertainty quantification and propagation regarding statistic uncertainty from one code to another. This method is sample-size independent and allows well-defined tolerance intervals for uncertainty quantification, manageable for uncertainty propagation. This work characterizes the distributional p-boxes behavior on uncertainty quantification and uncertainty propagation through nested random sampling.

Prediction Model of Final Project Cost using Multivariate Probabilistic Analysis (MPA) and Bayes' Theorem

  • Yoo, Wi Sung;Hadipriono, FAbian C.
    • Korean Journal of Construction Engineering and Management
    • /
    • v.8 no.5
    • /
    • pp.191-200
    • /
    • 2007
  • This paper introduces a tool for predicting potential cost overrun during project execution and for quantifying the uncertainty on the expected project cost, which is occasionally changed by the unknown effects resulted from project's complications and unforeseen environments. The model proposed in this stuff is useful in diagnosing cost performance as a project progresses and in monitoring the changes of the uncertainty as indicators for a warning signal. This model is intended for the use by project managers who forecast the change of the uncertainty and its magnitude. The paper presents a mathematical approach for modifying the costs of incomplete work packages and project cost, and quantifying reduced uncertainties at a consistent confidence level as actual cost information of an ongoing project is obtained. Furthermore, this approach addresses the effects of actual informed data of completed work packages on the re-estimates of incomplete work packages and describes the impacts on the variation of the uncertainty for the expected project cost incorporating Multivariate Probabilistic Analysis (MPA) and Bayes' Theorem. For the illustration purpose, the Introduced model has employed an example construction project. The results are analyzed to demonstrate the use of the model and illustrate its capabilities.

Effects of ILFs on DRAM algorithm in SURR model uncertainty evaluation caused by interpolated rainfall using different methods

  • Nguyen, Thi Duyen;Nguyen, Duc Hai;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.137-137
    • /
    • 2022
  • Evaluating interpolated rainfall uncertainty of hydrological models caused by different interpolation methods for basins where can not fully collect rainfall data are necessary. In this study, the adaptive MCMC method under effects of ILFs was used to analyze the interpolated rainfall uncertainty of the SURR model for Gunnam basin, Korea. Three events were used to calibrate and one event was used to validate the posterior distributions of unknown parameters. In this work, the performance of four ILFs on uncertainty of interpolated rainfall was assessed. The indicators of p_factor (percentage of observed streamflow included in the uncertainty interval) and r_factor (the average width of the uncertainty interval) were used to evaluate the uncertainty of the simulated streamflow. The results showed that the uncertainty bounds illustrated the slight differences from various ILFs. The study confirmed the importance of the likelihood function selection in the application the adaptive Bayesian MCMC method to the uncertainty assessment of the SURR model caused by interpolated rainfall.

  • PDF

Analysis of a cable-stayed bridge with uncertainties in Young's modulus and load - A fuzzy finite element approach

  • Rama Rao, M.V.;Ramesh Reddy, R.
    • Structural Engineering and Mechanics
    • /
    • v.27 no.3
    • /
    • pp.263-276
    • /
    • 2007
  • This paper presents a fuzzy finite element model for the analysis of structures in the presence of multiple uncertainties. A new methodology to evaluate the cumulative effect of multiple uncertainties on structural response is developed in the present work. This is done by modifying Muhanna's approach for handling single uncertainty. Uncertainty in load and material properties is defined by triangular membership functions with equal spread about the crisp value. Structural response is obtained in terms of fuzzy interval displacements and rotations. The results are further post-processed to obtain interval values of bending moment, shear force and axial forces. Membership functions are constructed to depict the uncertainty in structural response. Sensitivity analysis is performed to evaluate the relative sensitivity of displacements and forces to uncertainty in structural parameters. The present work demonstrates the effectiveness of fuzzy finite element model in establishing sharp bounds to the uncertain structural response in the presence of multiple uncertainties.

Application case for phase III of UAM-LWR benchmark: Uncertainty propagation of thermal-hydraulic macroscopic parameters

  • Mesado, C.;Miro, R.;Verdu, G.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.8
    • /
    • pp.1626-1637
    • /
    • 2020
  • This work covers an important point of the benchmark released by the expert group on Uncertainty Analysis in Modeling of Light Water Reactors. This ambitious benchmark aims to determine the uncertainty in light water reactors systems and processes in all stages of calculation, with emphasis on multi-physics (coupled) and multi-scale simulations. The Gesellschaft für Anlagen und Reaktorsicherheit methodology is used to propagate the thermal-hydraulic uncertainty of macroscopic parameters through TRACE5.0p3/PARCSv3.0 coupled code. The main innovative points achieved in this work are i) a new thermal-hydraulic model is developed with a highly-accurate 3D core discretization plus an iterative process is presented to adjust the 3D bypass flow, ii) a control rod insertion occurrence -which data is obtained from a real PWR test- is used as a transient simulation, iii) two approaches are used for the propagation process: maximum response where the uncertainty and sensitivity analysis is performed for the maximum absolute response and index dependent where the uncertainty and sensitivity analysis is performed at each time step, and iv) RESTING MATLAB code is developed to automate the model generation process and, then, propagate the thermal-hydraulic uncertainty. The input uncertainty information is found in related literature or, if not found, defined based on expert judgment. This paper, first, presents the Gesellschaft für Anlagen und Reaktorsicherheit methodology to propagate the uncertainty in thermal-hydraulic macroscopic parameters and, then, shows the results when the methodology is applied to a PWR reactor.

Sensitivity and Uncertainty Analysis of Two-Compartment Model for the Indoor Radon Pollution (실내 라돈오염 해석을 위한 2구역 모델의 민감도 및 불확실성 분석)

  • 유동한;이한수;김상준;양지원
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.4
    • /
    • pp.327-334
    • /
    • 2002
  • The work presents sensitivity and uncertainty analysis of 2-compartment model for the evaluation of indoor radon pollution in a house. Effort on the development of such model is directed towards the prediction of the generation and transfer of radon in indoor air released from groundwater. The model is used to estimate a quantitative daily human exposure through inhalation of such radon based on exposure scenarios. However, prediction from the model has uncertainty propagated from uncertainties in model parameters. In order to assess how model predictions are affected by the uncertainties of model inputs, the study performs a quantitative uncertainty analysis in conjunction with the developed model. An importance analysis is performed to rank input parameters with respect to their contribution to model prediction based on the uncertainty analysis. The results obtained from this study would be used to the evaluation of human risk by inhalation associated with the indoor pollution by radon released from groundwater.

A Comparative Study of Uncertainty Handling Methods in Knowledge-Based System (지식기반시스템에서 불확실성처리방법의 비교연구)

  • 송수섭
    • Journal of the military operations research society of Korea
    • /
    • v.23 no.2
    • /
    • pp.45-71
    • /
    • 1997
  • There has been considerable research recently on uncertainty handling in the fields of artificial intelligence and knowledge-based system. Various numerical and non-numerical methods have been proposed for representing and propagating uncertainty in knowledge-based system. The Bayesian method, the Dempster-Shafer's Evidence Theory, the Certainty Factor model and the Fuzzy Set Theory are most frequently appeared in the knowledge-based system. Each of these four methods views uncertainty from a different perspective and propagates it differently. There is no single method which can handle uncertainty properly in all kinds of knowledge-based systems' domain. Therefore a knowledge-based system will work more effectively when the uncertainty handling method in the system fits to the system's environment. This paper proposed a framework for selecting proper uncertainty handling methods in knowledge-based system with respect to characteristics of problem domain and cognitive styles of experts. A schema with strategic/operational and unstructured/structured classification is employed to differenciate domain. And a schema with systematic/intuitive and preceptive/receptive classification is employed to differenciate experts' cognitive style. The characteristics of uncertainty handling methods are compared with characteristics of problem domains and cognitive styles respectively. Then a proper uncertainty handling method is proposed for each category.

  • PDF

An Analysis of the Psychological Work Environments Facilitating Technology Innovations (기술혁신을 촉진하는 심리적 작업환경에 관한 연구 -후원적 작업환경과 도전적 작업환경을 중심으로-)

  • 한인수;박경환
    • Proceedings of the Technology Innovation Conference
    • /
    • 1997.07a
    • /
    • pp.83-123
    • /
    • 1997
  • The psychological work environments which facilitate technology innovations in organizations are divided into two dimensions of supportive work environments and challenging work environments. The confirmatory factor analysis confirmed the construct validity of two work environments. And simple and hierarchical regression analysis confirmed the significant effects of two work environments on motivations to the technology innovations. Therefore, Both of the challenging work environments(uncertainty of exta- organizational environments and tasks) and supportive work environments(managerial environments of intra-organizations) are the two important psychological work environments which facilitate technology innovations in organizations.

  • PDF

The Effect of Shift Work and the Open Kitchen System on Job Satisfaction and Job Stress (순환 근무와 오픈 주방 시스템이 직무 만족과 직무 스트레스에 미치는 영향)

  • Chae, Hyun-Seok
    • Culinary science and hospitality research
    • /
    • v.14 no.4
    • /
    • pp.339-356
    • /
    • 2008
  • The purpose of this study is to provide the developmental basic data of a change in shift work types by making a self-administered survey of the effect of commitment by shift work and the open kitchen system on job satisfaction and job stress, and mutual relation between variables on 287 cooks in luxury hotels. Analysis showed that the operation of the shift work system was effective in reducing the internal stress of the cooks, their external stress, or their self-uncertainty on the job, and the business by the open kitchen system was effective in raising self-esteem. In addition, job commitment by shift work and the open kitchen system were effective in promoting the job satisfaction of employees, interpersonal relations, promotion, benefits and wages. Consequently, the decrease of external and internal stress or self-uncertainty and the improvement of job satisfaction can be connected with the increase of productivity or cost reduction. Therefore, the open kitchen system should be properly applied to the shift work system, along with sanitation, safety and the periodic checkup of kitchen.

  • PDF

A Study on the Hospital Worker's Security Stress (국내 병원 종사자들의 보안스트레스에 관한 연구)

  • Hyun, Seung Hoon;Lee, Chang-Moo
    • Convergence Security Journal
    • /
    • v.16 no.7
    • /
    • pp.41-49
    • /
    • 2016
  • The need for protecting computerized medical information has been growing as information and communication technology has rapidly been developed. Government is also promoting institutional improvement measures for the information protection of medical institutions. With more emphasis upon the efforts to enhance the information protection capability of the medical institution, however, it could increase stress to the hospital workers and cause a reduction in the quality of essential medical services of medical institutions. Therefore, it is necessary to research the stress from hospital workers to strengthen the protection of information that medical institutions to manage and its antecedents. Based on the results of relevant researches, this study selected several factors that affect the security stress, including work overload, invasion of privacy and work uncertainty. The sample for this study was 123 hospital workers who were surveyed by questionnaire. The factor analysis and multiple regression method were employed for the analysis of this study. The results of this study showed that work overload, invasion of privacy and some of work uncertainty were the main factors positively influencing the security stress.