• 제목/요약/키워드: word based classification

검색결과 224건 처리시간 0.028초

Zero-anaphora resolution in Korean based on deep language representation model: BERT

  • Kim, Youngtae;Ra, Dongyul;Lim, Soojong
    • ETRI Journal
    • /
    • 제43권2호
    • /
    • pp.299-312
    • /
    • 2021
  • It is necessary to achieve high performance in the task of zero anaphora resolution (ZAR) for completely understanding the texts in Korean, Japanese, Chinese, and various other languages. Deep-learning-based models are being employed for building ZAR systems, owing to the success of deep learning in the recent years. However, the objective of building a high-quality ZAR system is far from being achieved even using these models. To enhance the current ZAR techniques, we fine-tuned a pretrained bidirectional encoder representations from transformers (BERT). Notably, BERT is a general language representation model that enables systems to utilize deep bidirectional contextual information in a natural language text. It extensively exploits the attention mechanism based upon the sequence-transduction model Transformer. In our model, classification is simultaneously performed for all the words in the input word sequence to decide whether each word can be an antecedent. We seek end-to-end learning by disallowing any use of hand-crafted or dependency-parsing features. Experimental results show that compared with other models, our approach can significantly improve the performance of ZAR.

비디오 감시 응용을 위한 텍스쳐와 컬러 정보를 이용한 고속 물체 인식 (Fast Object Classification Using Texture and Color Information for Video Surveillance Applications)

  • 이슬람 모하마드 카이룰;자한 파라;민재홍;백중환
    • 한국항행학회논문지
    • /
    • 제15권1호
    • /
    • pp.140-146
    • /
    • 2011
  • 본 논문에서는 텍스쳐와 컬러 정보를 기반으로 비디오 감시를 위한 빠른 물체 분류 방법을 제안한다. 영상들로부터 SURF와 색 히스토그램의 국부적 패치들을 추출하여 그들의 장점을 이용한다. SURF는 명암 내용 정보를 제공하고 색 정보는 패치에 대한 특이성을 증강시킨다. SURF의 빠른 계산뿐만 아니라 객체의 색 정보를 활용한다. 국부적 특징을 이용하여 관심 영역 혹은 영상의 전역적 서술자를 생성하기 위해 Bag of Word 모델을 이용하고, 전역적 서술자를 분류하기 위해 Na$\ddot{i}$ve Bayes 모델을 이용한다. 또한 본 논문에서는 판별적인 기술자인 SIFT도 성능 분석한다. 네 종류의 객체에 대한 실험결과 95.75%의 인식률을 보였다.

SVM을 이용한 디렉토리 기반 기술정보 문서 자동 분류시스템 설계 (Design of Automatic Document Classifier for IT documents based on SVM)

  • 강윤희;박용범
    • 전기전자학회논문지
    • /
    • 제8권2호
    • /
    • pp.186-194
    • /
    • 2004
  • 인터넷 상의 정보가 급증하여 필요한 정보를 찾고 관련된 정보를 조직화하는데 많은 시간이 소요된다. 따라서 정보접근 부하를 줄일 수 있는 자동적인 문서 분류의 중요성과 필요성이 증가하고 있다. 본 논문에서는 웹 문서의 자동 분류 시스템의 설계와 구현을 기술한다. 디렉터리 내의 학습 문서 집합을 기반으로 구성된 대표 단어 집합을 이용하여 문서 분류 모델을 학습하기 위해 SVM을 사용하였다. 본 시스템에서는 정보통신 웹 디렉터리 내의 문서로부터 추출된 단어 집합을 기반으로 SVM을 학습 시킨 후 신규 문서에 대해 문서 분류를 수행한다. 또한 TFiDF를 기반으로 특성을 표현하기 위해 벡터공간 모델을 사용하였고 학습 데이터는 가중치를 갖는 특성 집합으로 표현되어진 긍정 및 부정 집합으로 구성하였다. 실험에서는 문서분류의 결과 및 벡터길이의 관련성을 보인다.

  • PDF

양방향 LSTM을 적용한 단어의미 중의성 해소 감정분석 (Emotion Analysis Using a Bidirectional LSTM for Word Sense Disambiguation)

  • 기호연;신경식
    • 한국빅데이터학회지
    • /
    • 제5권1호
    • /
    • pp.197-208
    • /
    • 2020
  • 어휘적 중의성이란 동음이의어, 다의어와 같이 단어를 2개 이상의 의미로 해석할 수 있는 경우를 의미하며, 감정을 나타내는 어휘에서도 어휘적 중의성을 띄는 경우가 다수 존재한다. 이러한 어휘들은 인간의 심리를 투영한다는 점에서 구체적이고, 풍부한 맥락을 전달하는 특징이 있다. 본 연구에서는 양방향 LSTM을 적용하여 중의성을 해소한 감정 분류 모델을 제안한다. 주변 문맥의 정보를 충분히 반영한다면, 어휘적 중의성 문제를 해결하고, 문장이 나타내려는 감정을 하나로 압축할 수 있다는 가정을 기반으로 한다. 양방향 LSTM은 문맥 정보를 필요로 하는 자연어 처리 연구 분야에서 자주 활용되는 알고리즘으로 본 연구에서도 문맥을 학습하기 위해 활용하고자 한다. GloVe 임베딩을 본 연구 모델의 임베딩 층으로 사용했으며, LSTM, RNN 알고리즘을 적용한 모델과 비교하여 본 연구 모델의 성능을 확인하였다. 이러한 프레임워크는 SNS 사용자들의 감정을 소비 욕구로 연결시킬 수 있는 마케팅 등 다양한 분야에 기여할 수 있을 것이다.

텍스트 마이닝을 통한 건설공사 공문 잠재적 리스크 유형 분석 (Analysis of Potential Construction Risk Types in Formal Documents Using Text Mining)

  • 엄세호;차기춘;박선규;박승희;박종호
    • 대한토목학회논문집
    • /
    • 제43권1호
    • /
    • pp.91-98
    • /
    • 2023
  • 건설프로젝트에서 발생되는 리스크는 공기지연 및 비용증가에 큰 영향을 끼치기 때문에 다양한 리스크를 파악하기 위한 노력이 이루어지고 있다. 그러나 시공단계의 리스크 분석은 공종 및 수행단계에 국한되거나, 경험 의존적 의사결정이 주로 수행되고 있다. 데이터 기반의 분석도 일부 사례에 적용되고 있을 뿐이다. 따라서 본 연구에서는 시공사 또는 발주처에 중요한 요인들이 포함되어 있을 것으로 판단되는 수발신공문을 대상으로 군집분석과 Word2Vec 알고리즘을 적용하였다. 군집분석을 통해 6개 유형으로 1차 분류를 수행하였으며, Word2Vec을 통해 157개의 공문 발생 유형을 도출하였다. 도출된 연관어의 속성별 분석을 위하여 새로운 5개의 범주를 적용하였으며, 이를 통해 공문 발생 유형이 잠재적인 건설 리스크 요인으로 발전 가능한지 검토하였다. 텍스트 마이닝을 통한 3단계의 공문 발생 유형 분석 결과는 건설현장의 공정관리를 위한 기초 자료로써 도움 될 것으로 판단된다.

디지털 포렌식에서 텍스트 마이닝 기반 침입 흔적 로그 추천 (A Text Mining-based Intrusion Log Recommendation in Digital Forensics)

  • 고수정
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제2권6호
    • /
    • pp.279-290
    • /
    • 2013
  • 디지털 포렌식에서의 로그 데이터는 사용자의 과거 행적에 대한 추적을 목적으로 대용량의 형태로 저장된다는 특성을 가지고 있다. 이러한 대용량의 로그 데이터를 단서가 없이 수동으로 분석하는 절차는 조사관들에게는 어려운 일이다. 본 논문에서는 포렌식 분석을 하는 조사관들에게 믿을 만한 증거를 추천하기 위하여 대용량의 로그 집합으로부터 해킹 흔적을 추출하는 텍스트 마이닝 기술을 제안한다. 학습 단계에서는 훈련 로그 집합을 대상으로 전처리를 한 후, Apriori 알고리즘을 이용하여 침입 흔적 연관 단어를 추출하고, 신뢰도와 지지도를 병합하여 각 연관단어의 침입 흔적 확률을 계산한다. 또한, 침입 흔적 확률의 정확도를 높이기 위하여 스팸 메일의 여과에 사용된 Robinson의 신뢰도 계산 방법을 이용하여 확률에 가중치를 추가하며, 최종적으로 침입 흔적 연관 단어 지식 베이스를 구축한다. 테스트 단계에서는 연관 단어 지식 베이스를 기반으로 테스트 로그 집합에 대해 피셔(Fisher)의 역 카이제곱 분류 알고리즘을 적용하여 침입 흔적 로그일 확률과 정상 로그일 확률을 계산하고, 이를 병합하여 침입 흔적 로그를 추출한다. 추출된 로그를 조사관에게 침입 흔적이 있는 로그로서 추천한다. 제안한 방법은 비구조화된 대용량의 로그 데이터를 대상으로 데이터의 의미를 명확하게 분석할 수 있는 학습 방법을 사용함으로써 데이터의 모호성으로 인해 발생하는 정확도 저하 문제를 보완할 수 있으며, 피셔의 역 카이제곱 분류 알고리즘을 이용하여 추천함으로써 오분류율(false positive)을 감소시키고 수동으로 증거를 추출하는 번거로움을 줄일 수 있다는 장점을 갖는다.

온라인 리뷰에서 평점의 분류 (Classification of ratings in online reviews)

  • 최동준;최호식;박창이
    • Journal of the Korean Data and Information Science Society
    • /
    • 제27권4호
    • /
    • pp.845-854
    • /
    • 2016
  • 감성분석 (sentiment analysis) 혹은 오피니언 마이닝 (opinion mining)은 블로그, 리뷰, 신문기사나 소셜네트워크 등의 문서에서 개인의 주관적인 정보 혹은 의견을 알아보는데 사용되는 텍스트 마이닝의 기법이다. 평점이 있는 온라인 리뷰에서 리뷰 텍스트에 기반한 평점의 분류문제에 대한 선행연구에서는 이진 분류만을 고려하였다. 그러나 긍정과 부정 외에도 중립적인 의견도 있을 수 있기 때문에 이진 분류보다는 다범주 분류가 더 적합할 것이다. 본 연구에서는 리뷰 텍스트에 기반한 평점의 다범주 분류문제를 고려한다. 전처리에서는 카이제곱 통계량을 이용하여 평점과 연관된 단어들을 추출하고 이를 입력변수로 삼아 지지벡터기계 (support vector machines)와 비례오즈 모형 (proportional odds model) 등 다범주 분류기의 예측력을 비교한다.

전통문화 콘텐츠 표준체계를 활용한 자동 텍스트 분류 시스템 (A System for Automatic Classification of Traditional Culture Texts)

  • 허윤아;이동엽;김규경;유원희;임희석
    • 한국융합학회논문지
    • /
    • 제8권12호
    • /
    • pp.39-47
    • /
    • 2017
  • 한국 문화의 역사, 전통과 관련된 디지털 웹 문서가 증가하게 되었다. 하지만 창작자 또는 전통 문화와 관련된 소재를 찾는 사용자들은 정보를 검색해도 결과가 충분하지 않았으며 원하는 정보를 얻지 못하는 경우가 나타나고 있다. 이런 효과적인 정보를 접하기 위해서는 문서 분류가 필요하다. 과거에 문서 분류는 작업자가 수작업으로 문서 분류하여 시간과 비용이 많이 소비하는 어려움이 있었지만, 최근 기계학습 기반으로 한 자동 문서 분류를 통해 효율적인 문서 분류가 이루어진다. 이에 본 논문은 전통문화 콘텐츠를 체계적인 분류체계로 구성한 한민족정보문화마당 데이터를 기반으로 전통문화 콘텐츠 자동 텍스트 분류 모델을 개발한다. 본 연구는 한민족정보문화마당 텍스트 데이터에 대해 단어 빈도수를 추출하기 위해 TF-IDF모델, Bag-of-Words 모델, TF-IDF/Bag-of-Words를 결합한 모델을 적용하여 각각 SVM 분류 알고리즘을 사용하여 전통문화 콘텐츠 자동 텍스트 분류 모델을 개발하여 성능평가를 확인하였다.

시맨틱 구문 트리 커널을 이용한 생명공학 분야 전문용어간 관계 식별 및 분류 연구 (A Study on the Identification and Classification of Relation Between Biotechnology Terms Using Semantic Parse Tree Kernel)

  • 최성필;정창후;전홍우;조현양
    • 한국문헌정보학회지
    • /
    • 제45권2호
    • /
    • pp.251-275
    • /
    • 2011
  • 본 논문에서는 단백질 간 상호작용 자동 추출을 위해서 기존에 연구되어 높은 성능을 나타낸 구문 트리 커널을 확장한 시맨틱 구문 트리 커널을 제안한다. 기존 구문 트리 커널의 문제점은 구문 트리의 단말 노드를 구성하는 개별 어휘에 대한 단순 외형적 비교로 인해, 실제 의미적으로는 유사한 두 구문 트리의 커널 값이 상대적으로 낮아지는 현상이며 결국 상호작용 자동 추출의 전체 성능에 악영향을 줄 수 있다는 점이다. 본 논문에서는 두 구문 트리의 구문적 유사도(syntactic similarity)와 어휘 의미적 유사도(lexical semantic similarity)를 동시에 효과적으로 계산하여 이를 결합하는 새로운 커널을 고안하였다. 어휘 의미적 유사도 계산을 위해서 문맥 및 워드넷 기반의 어휘 중의성 해소 시스템과 이 시스템의 출력으로 도출되는 어휘 개념(WordNet synset)의 추상화를 통한 기존 커널의 확장을 시도하였다. 실험에서는 단백질 간 상호작용 추출(PPII, PPIC) 성능의 심층적 최적화를 위해서 기존의 SVM에서 지원되던 정규화 매개변수 외에 구문 트리 커널의 소멸인자와 시맨틱 구문 트리 커널의 어휘 추상화 인자를 새롭게 도입하였다. 이를 통해 구문 트리 커널을 적용함에 있어서 소멸인자 역할의 중요성을 확인할 수 있었고, 시맨틱 구문 트리 커널이 기존 시스템의 성능향상에 도움을 줄 수 있음을 실험적으로 보여주었다. 특히 단백질 간 상호작용식별 문제보다도 비교적 난이도가 높은 상호작용 분류에 더욱 효과적임을 알 수 있었다.

Word2Vec을 활용한 제품군별 시장규모 추정 방법에 관한 연구 (A Study on Market Size Estimation Method by Product Group Using Word2Vec Algorithm)

  • 정예림;김지희;유형선
    • 지능정보연구
    • /
    • 제26권1호
    • /
    • pp.1-21
    • /
    • 2020
  • 인공지능 기술의 급속한 발전과 함께 빅데이터의 상당 부분을 차지하는 비정형 텍스트 데이터로부터 의미있는 정보를 추출하기 위한 다양한 연구들이 활발히 진행되고 있다. 비즈니스 인텔리전스 분야에서도 새로운 시장기회를 발굴하거나 기술사업화 주체의 합리적 의사결정을 돕기 위한 많은 연구들이 이뤄져 왔다. 본 연구에서는 기업의 성공적인 사업 추진을 위해 핵심적인 정보 중의 하나인 시장규모 정보를 도출함에 있어 기존에 제공되던 범위보다 세부적인 수준의 제품군별 시장규모 추정이 가능하고 자동화된 방법론을 제안하고자 한다. 이를 위해 신경망 기반의 시멘틱 단어 임베딩 모델인 Word2Vec 알고리즘을 적용하여 개별 기업의 생산제품에 대한 텍스트 데이터를 벡터 공간으로 임베딩하고, 제품명 간 코사인 거리(유사도)를 계산함으로써 특정한 제품명과 유사한 제품들을 추출한 뒤, 이들의 매출액 정보를 연산하여 자동으로 해당 제품군의 시장규모를 산출하는 알고리즘을 구현하였다. 실험 데이터로서 통계청의 경제총조사 마이크로데이터(약 34만 5천 건)를 이용하여 제품명 텍스트 데이터를 벡터화 하고, 한국표준산업분류 해설서의 산업분류 색인어를 기준으로 활용하여 코사인 거리 기반으로 유사한 제품명을 추출하였다. 이후 개별 기업의 제품 데이터에 연결된 매출액 정보를 기초로 추출된 제품들의 매출액을 합산함으로써 11,654개의 상세한 제품군별 시장규모를 추정하였다. 성능 검증을 위해 실제 집계된 통계청의 품목별 시장규모 수치와 비교한 결과 피어슨 상관계수가 0.513 수준으로 나타났다. 본 연구에서 제시한 모형은 의미 기반 임베딩 모델의 정확성 향상 및 제품군 추출 방식의 개선이 필요하나, 표본조사 또는 다수의 가정을 기반으로 하는 전통적인 시장규모 추정 방법의 한계를 뛰어넘어 텍스트 마이닝 및 기계학습 기법을 최초로 적용하여 시장규모 추정 방식을 지능화하였다는 점, 시장규모 산출범위를 사용 목적에 따라 쉽고 빠르게 조절할 수 있다는 점, 이를 통해 다양한 분야에서 수요가 높은 세부적인 제품군별 시장정보 도출이 가능하여 실무적인 활용성이 높다는 점에서 의의가 있다.