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1  |   INTRODUCTION

Zero anaphora refers to a phenomenon in which pronouns 
to fill obligatory grammatical roles such as subject and 
object of predicates are omitted in natural-language texts. 
It occurs frequently in some languages such as Japanese, 
Korean, Chinese, and Italian. The omitted pronoun is 
called the zero pronoun (ZP). The predicate at which a 
ZP occurs is called the ZP predicate. It is assumed that 
the location of the ZP is the same as that of its predicate. 
Subjects are omitted significantly more frequently than 
objects. We confine our zero-anaphora resolution (ZAR) 

system to deal with only ZPs attributed to the omission of 
a subject.

In a document that contains a ZP, there may exist one or 
more noun phrases (NPs) that co-refer to the same entity in 
the world as the ZP. These NPs are referred to as antecedents 
of the ZP. Antecedents occur before the ZP. Therefore, the 
NPs that appear before ZP are called candidate antecedents 
(CAs).

Given a document, we must detect ZPs and find their 
antecedents. This process is called ZAR. For better under-
standing of texts, we must achieve high performance in ZAR. 
Assume there is a ZP in a text. If there exists at least one 
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Abstract
It is necessary to achieve high performance in the task of zero anaphora resolution 
(ZAR) for completely understanding the texts in Korean, Japanese, Chinese, and var-
ious other languages. Deep-learning-based models are being employed for building 
ZAR systems, owing to the success of deep learning in the recent years. However, 
the objective of building a high-quality ZAR system is far from being achieved even 
using these models. To enhance the current ZAR techniques, we fine-tuned a pre-
trained bidirectional encoder representations from transformers (BERT). Notably, 
BERT is a general language representation model that enables systems to utilize deep 
bidirectional contextual information in a natural language text. It extensively exploits 
the attention mechanism based upon the sequence-transduction model Transformer. 
In our model, classification is simultaneously performed for all the words in the 
input word sequence to decide whether each word can be an antecedent. We seek 
end-to-end learning by disallowing any use of hand-crafted or dependency-parsing 
features. Experimental results show that compared with other models, our approach 
can significantly improve the performance of ZAR.
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antecedent, then ZP is said to be anaphoric. Otherwise, it is 
said to be non-anaphoric. Both the cases frequently occur in 
texts.

In Figure 1, the subject of a verb 떠났다 is omitted, re-
sulting in a ZP. The symbol ϕ indicates the ZP. The properties 
of this ZP are as follows:

ZP predicate: 떠났다;
CAs: “그 소녀는”, “도서관에”, “많은 학생들이”, “책

을”, “어머니로부터”, “전화가”, “집으로”;
Antecedents: “그 소녀는”.
We require our ZAR system to find the main word of an 

NP that is an antecedent. Our system need not recognize the 
entire NP. More details will be provided in Section 4.1. In 
Figure 1, the word 소녀는 is the main word of the antecedent 
NP “그 소녀는. Among the words in an NP, the last word is 
the main one in Korean.

Generally, a ZP can have zero or more antecedents. 
ZAR involves two subtasks: (i) detecting a ZP, and (ii) 
searching the antecedent of the ZP [1–3]. The detection 
subtask is required because there exist no explicit marks in 
a text, indicating the occurrences of ZPs. After the anteced-
ent search is completed, the system can decide whether the 
ZP is non-anaphoric or anaphoric. This decision regarding 
anaphoricity can be made using the result of the anteced-
ent-search process. The configuration of our ZAR system 
is depicted in Figure 2.

Devlin and others [4] recently introduced a new lan-
guage representation model called BERT, which employs 
“Transformer,” a deep-learning architecture that extensively 
exploits attention mechanism [5]. Transformer can model the 
encoding and decoding processes of language-understanding 
tasks. BERT is a general language representation model based 
on Transformer. It is pre-trained using significant amount of 
unlabeled corpora. It can model deep bidirectional contexts 
of words to the left and right of a text. It can also be used as 
an underlying language model for various language-under-
standing tasks. It was shown that the approach of fine-tuning 
BERT allows the development of state-of-the-art systems in 
many tasks.

ZAR is a difficult task. The performances of best systems 
up to now are not high even after a long history of research. 
It is interesting to see whether finetuning a pre-trained BERT 
can enable systems to achieve a significant improvement in 
ZAR. In this study, we will describe our work done to answer 
this question. Among the two subtasks of ZAR in Figure 2, 
antecedent search has received more attention in research 

than ZP detection. ZP detection can rely on the syntactic 
analysis of sentences or binary classification of predicates. 
Antecedent search seems to require more intelligence than 
ZP detection. Additionally, the possibility of a ZP being non-
anaphoric makes the search task difficult. Similar to many 
other recent research works on ZAR, we focus on antecedent 
search.

We developed an antecedent-search module by fine tun-
ing a pre-trained BERT. This search module is based on 
a deep-learning model, which is constructed by adding a 
neural-network architecture on top of BERT. Fine-tuning 
is performed using a Korean tagged corpus annotated for 
ZAR.

We also developed another antecedent-search module 
based on various other machine-learning models, such as the 
structural support vector machine (S-SVM) [6] and pointer 
network [7,8]. Our BERT-based model outperformed these 
aforementioned models.

We also performed experimentations to compare our 
technique with those in recent research works based on var-
ious deep-learning models [9–11]. We developed anteced-
ent-search modules based on these models. The same Korean 
tagged corpus was used in developing these models. The ex-
periment shows that our model is superior to their models in 
terms of ZAR performance.

This paper is organized as follows. The related re-
search is explained in Section 2. A concise introduction 
to Transformer and BERT is presented in Section 3. In 
Section 4, we describe how our search module that employs 
a BERT-based model is constructed. Experimental results 
and discussions are provided in Section 5. Conclusions are 
drawn in Section 6.

2  |   RELATED WORK

Many studies have been performed on ZAR in the past. The 
research witnessed four major trends, which mostly appeared 
consecutively. First, most research works utilized rule-based 
frameworks [2,12–14]. As corpus linguistics became active, 
statistical or probabilistic models were exploited [1,15,16]. 
Subsequently, as machine learning gained relevance, vari-
ous machine-learning models were used for developing 
ZAR systems [3,17,18]. As deep-learning technology has 
recently flourished in the domain of artificial intelligence, 
deep-learning models have also begun to be utilized in ZAR 
[9,10,11,19].

Chen and Ng [9] developed a system based on deep neural 
networks for ZAR in Chinese. They proposed a method for 
developing an antecedent-search module when an anaphoric 
ZP is given. However, one limitation of their work was that 
they did not suggest a way to distinguish between anaphoric 
and non-anaphoric ZPs. Their model employed a simple F I G U R E  1   Example of a ZP in a Korean text.
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architecture that comprised a feed-forward neural network 
(FFNN). Cosine similarity was adopted to select an anteced-
ent out of CAs at a late stage of the system, thereby deviating 
from the deep-learning approach.

Yin and others [10] attempted to improve the anteced-
ent-search model of Chen and Ng [9]. Their model also 
required the input to be an anaphoric ZP. However, they ex-
tensively used attention mechanism, inspired by the recent 
trend of deep learning. Self-attention was used for obtaining 
a representation vector of the ZP. A recurrent neural net-
work (RNN) that used long short-term memory (LSTM) 
blocks was utilized to encode the context around the ZP. A 
NP chosen as a CA was also modeled using an LSTM-RNN. 
An attention mechanism was used to produce a vector that 
represented the NP. These two vectors, along with a vector 
that represented handcrafted features, were used as the input 
to an FFNN. Subsequently, the FFNN outputs the probabil-
ity that the CA is an antecedent of the ZP. Their advanced 
architecture improved the performance by approximately 
3% relative to the model of Chen and Ng [9]. However, ZP 
detection and anaphoricity decision were beyond the scope 
of their work.

Iida and others [11] proposed a method for Japanese 
ZAR based on multi-column convolutional neural networks 
(MCNNs). An NP (as a CA) and a ZP predicate are fed 
to the MCNN model as a part of the input. The output of 
MCNN is the probability that the CA is an antecedent of 
the ZP. The MCNN comprises multiple convolutional neu-
ral networks (CNNs). A text segment is given to each CNN, 
which then produces a vector that represents the input. 
Subsequently, the output vectors of all the CNNs are con-
catenated and inputted to an FFNN, which forms the upper 
layers of the MCNN. The FFNN outputs the probability that 
the CA is an antecedent of the ZP. However, a limitation of 
their work is that only a single sentence that contains the ZP 
constitutes the search space. ZP detection was not discussed 
in their work as well.

Jung and Lee [19] used an advanced deep neural archi-
tecture for recovering dropped pronouns in Korean. Given a 
sentence as the input, their system performed two subtasks: 
detecting a ZP and determining the type of the ZP (if it ex-
ists). However, antecedent search is not performed by their 
system. Therefore, the goal of their work is different than 
ours.

After observing that BERT could be used to develop state-
of-the-art systems for various language tasks, new language 

representation models with a similar purpose have been pro-
posed, and these models possess several advantages [20–22]. 
Exploiting these new models may enable us to further enhance 
our ZAR performance. Yin and others [23] added collaborative 
filtering to their original method [10] to improve performance. 
However, the performance gain over their original method 
was not significant. Kong and others [24] proposed a chain-
to-chain approach in ZAR. In their method, ZP resolution was 
attempted between ZP co-referential chains and common NP 
co-referential chains, thereby reducing the search space. Their 
method achieved an F-score of 55.8 in ZP resolution, and this 
is the best score among ZAR systems in Chinese.

3  |   BERT

Bidirectional encoder representation from transformers 
(BERT) is a recently introduced general language representa-
tion model [4]. The linguistic motivation behind using BERT 
can be stated as follows: BERT can encode deep bidirectional 
contextual information both on the word and sentence levels; 
it can encode phrase-level information in lower layers; it can 
encode a rich hierarchy of linguistic information such as sur-
face features at bottom layers, syntactic features in the middle 
layers, and semantic features at the top layers; it can encode 
long-distance dependency information on deeper layers; it 
can capture linguistic information in a compositional manner 
similar to that employed in classical tree-like structures.

A pre-trained BERT can be exploited to develop systems 
for various language tasks. The pre-training approach is ef-
fective in building state-of-the-art models.

3.1  |  Transformer

For sequence-modeling and transduction problems, such as 
language modeling and machine translation, the RNN archi-
tecture has been widely adopted in deep learning [25]. Because 
of the vanishing gradient problem, it was proposed to replace 
the units of RNN with LSTM units, which have a set of gates 
that control the transfer of signals [26]. Gated recurrent units 
were also introduced with a similar purpose [27]. They were 
shown to have advantages over simple units of RNN [28]. 
Attention mechanism was introduced to enhance sequence 
models based on these RNN-type models [29].

To advance sequence modeling and transduction, a model 
named Transformer was introduced, which offers advantages 
in modeling global contextual dependencies [5]. Transformer 
eschews recurrence for the better exploitation of attention 
mechanism, allowing the modeling of long-distance depen-
dencies and enabling efficient parallelization. Transformer 
comprises an encoder and a decoder. Because BERT uses 
only the encoder part of Transformer, our explanation will 

F I G U R E  2   Configuration of our ZAR system.
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be confined to this part only. Figure 3 depicts an encoder that 
comprises n layers. In each layer, attention operation is per-
formed, and its result is fed to an FFNN. Each attention step 
and each feed-forward step are followed by an “add and nor-
malization” step (not shown in Figure 3) [30].

The same architecture is shared across all the positions. 
Let x(l)

i
 denote the output vector of layer l at position i. Let 

H be the size of the output vector of each layer. Let X(l) be 
a matrix whose ith row is x(l)

i
. X(0) is initialized by using the 

word-embedding vectors of the tokens in the input sequence. 
Transformer specifically uses the dot-product attention im-
plemented by matrix multiplication as follows. Compatibility 
D is computed as follows:

Let τ be the length of the input sequence. D(l) is a τ × τ 
matrix, where D(l)

i,k
 represents the compatibililty between the 

output of layer l – 1 at position i and that of layer l – 1 at 
position k. A row-wise softmax operation is applied to D(l) to 
obtain weight matrix S(l) as follows:

 for all i, k, 0 ≤ i ≤ τ – 1, 0 ≤ k ≤ τ – 1. For brevity, we write this 
softmax operation as follows:

Furthermore, A(l), which is computed using (4), is the re-
sult of attention step at layer l for all the positions. Row i of 
A(l) is the output vector at position i of the attention step of 
layer l.

Each row i of softmax S(l) is used for weighting the vectors 
of layer l – 1 of all the positions to obtain an output vector for 
the specific position i.

Transformer adopts multi-head attention, which is an 
extension of the previously introduced basic attention. To 
compute a head, headi, X(l−1) is projected to three matrices 
Q, K, and V as follows, where WQ

i
, WK

i
, WV

i
 denote parameter 

matrices:

Subsequently, the ith head is computed as follows:

In the case of multi-head attention with h heads, the final 
result of attention A(l) is obtained as follows:

where concat denotes row-wise concatenation. WO ∈ RhH×H is 
a matrix that projects multi-heads to the attention result. The 
projection matrices Ws are the parameters of the model, and 
their values must be learned with training. The FFNN part in 
each layer involves many weights and biases, which are also the 
parameters of the model.

3.2  |  Pre-training BERT

BERT is a language representation model that adopts the 
encoder part of Transformer as its architecture [4]. It sig-
nificantly exploits self-attention and can learn deep bidi-
rectional contexts. It is pre-trained using a large unlabeled 
corpus.

Figure 4 depicts situations in which BERT is being pre-
trained. An input sequence to BERT comprises two special 
tokens and words of two text segments A and B. The special 
token [CLS] is placed in front of segment A, and [SEP] is 
inserted between both the segments. To counter the unknown 
word problem, the words in the segments are transformed to 

(1)D(l) =X(l−1)X(l−1)T.

(2)S
(l)

i,k
=

exp
�

D
(l)

i,k

�

∑�−1

j=0
exp

�

D
(l)

i,j

� ,

(3)S(l) = softmax
(

D(l)
)

.

(4)A(l) =S(l)X(l−1).

(5)Q=X(l−1)W
Q

i
,

(6)K=X(l−1)WK
i

,

(7)V=X(l−1)WV
i
.

(8)headi = softmax
(

QKT
)

V.

(9)A(l) = concat
(

head1,… , headh

)

WO,

F I G U R E  3   Transformer model (encoder part) at position i.
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the sequences of word pieces [4,31–33]. Therefore, the input 
sequence to BERT comprises two special tokens and word-
piece tokens. At each position, the input vector to BERT is 
formed by concatenating three embedding vectors that corre-
spond to token, segment, and position, respectively [4].

BERT is pre-trained using two schemes. The first one is 
called “masked” language modeling, which enables BERT 
to be deeply bidirectional. In this scheme, the words in 
the corpus are randomly selected and masked using string 
[MASK]. The training aims to predict the original words at 
the positions with [MASK]. Via this training scheme, BERT 
can absorb token-level bidirectional deep context because its 
self-attention is bidirectional and based on deep Transformer 
architecture with more than 12 layers. In Figure 4, the input 
word at position 8 is masked. At the output layer added on 
the top of BERT, the masked word in the input is predicted. 
Training is performed with “car” (which was masked) as the 
target of prediction.

Many applications, such as paraphrase, entailment, and 
language inference, require sentential-relationship knowl-
edge. To enable BERT to acquire such knowledge, the 
next-sentence prediction (NSP) task is used for pre-train-
ing. Each of segments A and B is fed with a sentence. 
Accordingly, the NSP is to make a binary decision whether 
it is natural that the sentence in segment B immediately 
follows the sentence in segment A in real-world texts. An 
output layer is added on the top of BERT at position 0 
(whose token is [CLS]) to perform binary classification, as 
depicted in Figure 4.

An unlabeled corpus is used for pre-training. Therefore, 
it is not difficult to acquire training data of large size. The 
parameters related to the added layers are trained during the 
BERT fine-tuning process. The parameters of BERT are also 
trained in this process.

4  |   ZAR WITH BERT

To build a model based on BERT for an application, a neu-
ral-network architecture is added on the top of pre-trained 
BERT. Two approaches were suggested related to the train-
ing of the BERT-based model: fine-tuning and feature-based 
approaches [4]. In the fine-tuning approach, the parameters 
in both added architecture and BERT are updated via fine-
tuning. However, in the feature-based approach, the param-
eters only in the added part are updated. We employ the 
fine-tuning approach to build our ZAR model.

4.1  |  Annotations used in tagged corpus

A ZAR tagged corpus is used for training and testing in de-
veloping ZAR systems. We introduce an annotation scheme 
used to construct our tagged corpus. This enables us to ex-
plain our model more clearly. Given a text document used 
for tagging, all the ZPs should be identified and manually 
tagged. This involves tagging ZP predicates and their ante-
cedents. In this study, the terminology “words” represents the 
strings separated by spaces in a sentence. A word is a unit 
called “eojeol” in Korean. We adopt a single-word-tagging 
policy. In our tagging rule, only one word is tagged as a ZP 
predicate. The same rule applies to the antecedents. If a ZP 
predicate or an antecedent is a multi-word phrase, only the 
head word among them is tagged.

An example of annotation is depicted in Figure 5. A ZP 
predicate is a compound predicate “가지 못했다” that com-
prises two words. Only the head word 가지 is tagged as the 
ZP predicate by enclosing it within tags “</pn:” and “/>.” 
An antecedent of a ZP is an NP. It may comprise more than 
one word. In Figure 5, the NP “금발머리의 미국소녀가” 
is an antecedent of the ZP. Although the NP has two words, 
only the head word 미국소녀가 is tagged as antecedent by 
using tags “</an:” and “/>.” Notably, the word 금발머리의 
of the NP is not annotated. The number n in tags “</pn:” or 
“</an:” is used to associate an antecedent to its ZP predicate. 
Notably, 미국소녀가 contains a compound noun. Because it 
is a single word, its entire part is annotated.

In the tagged corpus, every ZP predicate constitutes one 
ZAR problem. A ZP may have zero or more antecedents. In 
Figure 5, because there is only one ZP predicate, there exists 
one ZAR problem, which comprises the following compo-
nents, along with the text of the document:

ZP predicate: “가지 못했다”;
Antecedents: “금발머리의 미국소녀가”, “그녀는”.
The ZAR system should perform the following subtasks:

•	 ZP detection: This task is to detect ZPs that exist in a 
document. Among all the predicates in the document, the 

F I G U R E  4   Using two tasks for pre-training BERT.
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predicates whose subjects are missing should be identified. 
For example, predicate “가지 못했다” in Figure 5 does 
not have a subject. Therefore, a ZP occurs at this predicate. 
Notably, 머물렀다 has a subject 그녀는, and thus a ZP 
does not occur at this predicate.

•	 Antecedent search: This task is to find the antecedents of 
a ZP, which is sent by a ZP-detection module. The goal of 
this task in this study is to find one of the antecedents of 
the ZP. If the ZP is anaphoric, the system must find one 
word as an antecedent. Otherwise, the system should no-
tice that there is no antecedent.

ZP detection is simpler than antecedent search and, thus, 
received less attention by researchers.1 Antecedent search is 
sometimes called ZP resolution. We aim to develop a module 
in charge of antecedent search. Therefore, ZPs annotated in 
the tagged corpus are used as input to our antecedent-search 
module for training and testing.

4.2  |  Proposed model

We propose to utilize a deep-learning model for developing an 
antecedent-search module depicted in Figure 2. Accordingly, 
we fine-tune a pre-trained BERT to develop the module.

The deep-learning model employed by our module is 
based on BERT, as depicted in Figure 6. As suggested in [4], 
a neural-network architecture is added on the top of BERT so 
that the added part can produce an output appropriate for a 
downstream task, such as ZAR. Our first model, called ZB1, 
is built by adding only one output layer O, as depicted in 
Figure 7A. Because the model should perform binary clas-
sification for each input token into A (antecedent) and N (not 
antecedent), the output layer comprises two neural units. The 
softmax output of the first unit, y0 represents probability PA 
that the input token is classified as A by the model. The out-
put of the second unit, y1, is the probability PN that the token 
is classified as N. Notably, PA + PN = 1.

Another model ZB2 depicted in Figure 7B has one more 
layer B between layers O and n. Layers O and B are fully con-
nected FFNN layers. Although it was suggested in [4] that it 
is sufficient to add only simple FFNN layers as in ZB1 and 
ZB2, we built another model called ZBL by adding an RNN 
layer on the top of BERT. We used LSTM units for the RNN. 
The motivation is that performance improvement can be ex-
pected because an RNN can encode the history information.

The input to our model is a sequence of tokens, X = 
(x0,… , x

�−1), which corresponds to the “tokens” row in 

Figure 6. We denote the input-sequence length by τ in this 
paper. Our model performs sequence labeling on the input 
sequence. Thus, the output is a sequence of labels Y = 
(l0,… , l

�−1), where li denotes a label to which xi is assigned 
by the model. The set of all the possible output labels in our 
model is denoted by L = {A, N} as previously mentioned.

To construct an input, our model uses two text segments A 
and B. We feed a word of a ZP predicate into segment A. The 
words in the text from the beginning of the document until 
the ZP predicate are placed in Segment B. Figure 6 depicts 
two segments that comprise words for the ZAR problem of 
the ZP shown in Figure 1.

Each word in Segments A and B is divided into one or 
more tokens (or subwords) using a tokenizer. The words here 
correspond to “eojeols” in Korean. Tokens (more primitive 
than words) are used as input units to BERT to reduce the un-
known word (or out of vocabulary) problem. The word-piece 
model is used for tokenization in Google BERT [31,32], 
while byte-pair encoding is used in the BERT specialized for 
Korean [33].

The input sequence to BERT, X = (x0,… , x
�−1), is 

formed by using the tokens from words in Segments A and 
B and two special tokens [CLS] and [SEP]. As depicted 
in Figure 6, [CLS] is placed at the first position. [SEP] is 
placed at a position between Segments A and B and at the 
last position. At each token position, an input vector that 
corresponds to the token is formed by summing token em-
bedding, segment embedding, and positional embedding, as 
explained in [4]. The input vectors of all the token positions 
constitute an input sequence, which is the actual input to the 
BERT model.

Conceptually, the output of the model can be used to 
construct a label sequence Y = (l0,… , l

�−1). Our model pro-
duces two label probabilities PA and PN (from the two units 
of layer O) at each token position. It works on the token level. 
The tokens from a same word may have different PA values. 
The system (ie, the antecedent-search module in this study), 
which employs the BERT-based model, should produce an 
output at the word level. Conversely, a word that can be an an-
tecedent must be recognized and outputted. Therefore, from 
the token-level output of the model, the word-level output of 
the system should be obtained, as will be detailed in Section 
4.4.

For example, the row PA in Figure 6 shows the PA values 
of tokens for the ZP in Figure 1. This output of the model 
appears satisfactory because PA is high for the tokens from 

 1For ZP detection, a dependency-parsing result is generally used. 
Alternatively, a machine-learning-based classifier may be used to detect a 
predicate whose subject is missing.

F I G U R E  5   Annotation in the tagged corpus.
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the antecedent word “소녀는” and low for all tokens from 
non-antecedent words and special tokens.

The Korean morphology is complex. A word in the com-
pound-noun category contains multiple nouns as morphemes. 
It may have a suffix called “josa” as the last morpheme. 
However, we consider a compound-noun word similar to a 
simple noun. Without distinguishing between a compound 
noun and simple noun, both of them are transformed to to-
kens by using the tokenizer. Subsequently, the tokens are fed 
to the input token sequence. Thus, no special treatment is ap-
plied only to compound-noun words. We process all the to-
kens produced from any word in the same way in our model.

In [4], the first token of a word is assigned a different role 
than the remaining tokens. For example, in the BERT-based 
model for NER, the first token from a word is assigned a 
target label B-PS, and a special target label “X” is assigned to 
other tokens of the word. For inference, their model used the 
probability output of the first token to make a decision on the 
word (outputs from other tokens are ignored). However, all 
the tokens of a word are utilized in our approach. Our all-to-
ken (AT) approach was superior to the first token (FT) only 
approach in terms of performance. Further details on token 
processing will be described in Section 4.4.

4.3  |  Fine-tuning of BERT

A training example for fine-tuning is prepared for each ZP 
that exists in the ZAR tagged corpus. It comprises a pair, 
(input token sequence, target label sequence). Figure 6 de-
picts an example of a target label sequence that corresponds 
to an input token sequence for the ZP in Figure 1.

In our model, target output labels that correspond to the 
input tokens are prepared as follows. All the tokens generated 
from the words with an antecedent tag in Segment B are as-
signed target label A. Target label N is assigned to (a) all the 

tokens from all other words in Segment B, (b) all the tokens 
from all the words in Segment A, and (c) two special tokens 
[CLS] and [SEP]. An example is depicted in Figure 6. Target 
label A is assigned to all the tokens from word 소녀는 in 
Segment B because word 소녀는 is tagged as an antecedent 
in Figure 1. Subsequently, all the other tokens in the input 
sequence are assigned target label N.

If the ZP is anaphoric, there exists at least one word that is 
tagged as an antecedent. Thus, there will be at least one token 
whose target output label is A. However, if the ZP is non-
anaphoric, the target labels for all input tokens should be N.

Let us explain training only for model ZB1, which is de-
picted in Figure 7A. Unit 0 of layer O corresponds to label A 
and unit 1 to label N. Let WF be the weight matrix between 
the output layer O and layer n of BERT. The first row of WF 
has the weights of connections that are directed into unit 0 
of layer O from units of layer n. The second row is for unit 1 
of layer O. Let X(n) be the output matrix of the last layer n of 
BERT. Row i of X(n) is the output vector of layer n at position 
i. The output of layer O for all the positions is computed via 
matrix multiplication as follows:

where T denotes transpose operation.
The element (with row index i and column index u) Fi,u 

of matrix F is the value of unit u of layer O at position i. We 
use τ to denote the input-sequence length. Matrix Y is the 
softmax that corresponds to F. Yt,u (an element of row index t 
and column index u) is computed as follows:

for all t, 0 ≤ t ≤ τ – 1 and all u, 0 ≤ u ≤1. The element Yt,u 
is the probability that, at time t, the label that corresponds to 
unit u is the label for the input token. Let dt be the index of 
the target (gold) label for a token at position t. Accordingly, 
the loss L of our model can be defined using cross-entropy 
as follows:

where θ denotes the set of all the parameters in our model. 
Training is performed to calculate the θ that minimizes L.

4.4  |  Inference

An ideal system must search the entire document to find an 
antecedent of the given ZP. Because antecedents can occur 

(10)F=X(n)x
(

WF
)T

,

(11)Yt,u =
eFt,u

eFt,0 +eFt,1 ,

(12)L (�)=−

� − 1
∑

t= 0

ln
(

Yt,dt

)

,

F I G U R E  6   Overall configuration of our model based on BERT 
including input and output.
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at any position in the document before the location of the ZP 
predicate, the search space is generally the entire text por-
tion from the beginning of the document to the ZP predicate. 
The larger is the search space, the more difficult is a ZAR 
problem.

We introduce the search windows of different sizes. In 
Figure 8, s0 denotes a sentence that contains the ZP, and s0

′ 
denotes the part of s0 from the beginning to the ZP. Symbol 
si denotes the sentence that is the ith sentence to the left of 
s0. For a ZP, a search window of size i is considered the 
portion of the document that comprises the sentences in 
{si, si−1,… , s1, s0

�}. When the window size (WS) is con-
strained to i, it is assumed that the document starts at si, al-
though the document has more sentences in front of si. Thus, 
the search space is limited to a window of size i.

To be fair while comparing two ZAR systems with each 
other, they should be developed and tested at the same diffi-
culty level. This can be achieved by making both the systems 
use the same size of search window. This is a widely adopted 
convention in ZAR research. If we have the performance data 
of System A, which was developed using the search WS of 3, 
the same WS should be used to develop and test System B to 
ensure a fair comparison between both the systems.

The goal of the antecedent-search module discussed 
in this study is to find a word that is an antecedent of the 
given ZP. Even if there exist more than one antecedents, find-
ing only one of them is considered to accomplish the goal. 
Furthermore, in the case of non-anaphoric ZP (ie, there are 
no antecedents in the search space), the system should rec-
ognize that there is no antecedent. However, if an antecedent 
is found by the system for a non-anaphoric ZP, the system is 
judged to be wrong in its processing.

Our search module draws inference (prediction) when a 
ZP is given by using the algorithm depicted in Figure 9. The 

ZP predicate is placed into Segment A of BERT. The words 
in the search window are placed in Segment B. The input 
token sequence is created, as explained in Section 4.2. (In 
the case of training, the target label sequence is supplied, as 
explained in Section 4.3.)

In Step 1, BERT will compute X(n), the output of the last 
layer n. Subsequently, F, the output matrix of layer O at all 
the positions, will be computed using (10). Finally, Y will be 
computed from F by using (11). Matrix Y contains proba-
bilities PA and PN of labels A and N, respectively, for all the 
input tokens.

In Step 2, a token that has the highest probability of 
being classified to label A (ie, representing the maximum 
likelihood of being an antecedent) is identified. To that 
end, probabilities PA (previously mentioned) from the units 
of output layer O are used. Let t

⋀

, x
t
⋀, and P

⋀

A denote the posi-
tion, token, and label-A probability of the identified token, 
respectively.

In Step 3, P
⋀

A is compared with threshold γ, where 0 < 
γ ≤ 1, to decide whether token x

t
⋀ is from an antecedent. 

If P
⋀

A ≥ γ and x
t
⋀ is a token from a word in Segment B, 

this word (denoted by wd (x̂
t )) is considered an antecedent 

and outputted as the result of the inference algorithm (in 
line 3-2). If the highest label-A probability, P

⋀

A, is below 
threshold γ or the token with P

⋀

A is not from a word in 
Segment B, it is decided that there is no antecedent for the 
ZP (in line 3-3).

When an index (position) t of a token is given, the corre-
sponding word can be easily found by managing a mapping 
table between the tokens and words in Segments A and B. If 
γ is large, the word found by the algorithm might be a correct 
antecedent. However, a large γ can result in an algorithm that 
may easily miss finding correct antecedents. Therefore, there 
exists a trade-off between the value of γ and the quality of 
algorithm.

To measure the performance, the result of the algorithm 
for each ZP problem is judged. If the ZP is anaphoric (ie, 
there are one or more antecedents in the search window), the 
system should find and output a word that is a correct an-
tecedent specified in the tagged corpus. Otherwise, the sys-
tem should recognize that there is no antecedent for the ZP.

If the search window is large, Segment B can be big, and 
thus the input-sequence length can be larger than the maxi-
mum allowed input length τm of the model. (In our model, 
it is currently set to 512.) In this case, we split Segment B 
into several pieces, and each piece is used as Segment B. The 
model is run for each piece with the same Segment A. The 
results of these runs are used to obtain a token with the max-
imum probability P

⋀

A. This token is used as x
t
⋀ in Step 3 of our 

inference algorithm.
Although the processing of our model is performed at 

the token level, the inference algorithm should generate an 

F I G U R E  7   Added layers in (A) ZB1 and (B) ZB2 for each input 
token.
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output at the word level. This results in some complications 
in system development. Furthermore, the morphemes of 
words may be chosen as units to be placed into Segments A 
and B of BERT after performing the morphological analysis 
of the text. Subsequently, the morphemes will be converted to 
tokens by using a tokenizer to form an input token sequence.

Figure 10 depicts various schemes of using tokens and 
morphemes in developing BERT-based ZAR models for 
Korean. Let word wi be a correct antecedent of a ZP (which is 
indicated by an annotation). The target labels assigned to the 
tokens generated from this word are shown for each scheme.

There are two ways of processing tokens from a word (or 
morpheme). Let us introduce the FT approach, in which the 
first token from a word is assigned a special status. It is the 
main token and represents the word. The other tokens follow-
ing the first one are considered secondary. Target labels A and 
N are assigned to only the first tokens. We introduce a new 
target label X. The secondary tokens are assigned target label 
X. The first and secondary tokens are involved in training by 
using these target labels. However, for inference, only first 
tokens are used. In Step 2 of the algorithm, only first tokens 
are involved in finding a token with maximum PA. In execut-
ing ARGMAX in Step 2-1, the tokens whose target label is 
X are ignored.

The alternative to the FT approach is the AT approach, in 
which all the tokens of a word (or morpheme) are involved in 
both training and inference.

When morphemes are fed into Segments A and B, there 
are the following two options in using the morphemes of 
words: using only the head morpheme (HM) or using all the 
morphemes (AM). In the HM scheme, only the HM (ie, the 
last morpheme of a word in Korean) is used for training and 
inference. The morphemes that precede an HM in a word are 
considered secondary. All the tokens from secondary mor-
phemes are assigned label X as the target label in training. 
Although these tokens participate in training, they are ig-
nored in inference like in the FT scheme. Only the tokens 
from HMs are involved in inference. In the AM scheme, all 
the morphemes of a word are exploited both in training and 
inference.

Four possible combinations of token and morpheme 
usage are depicted in Figure 10B. The HM is denoted by m2. 

Notably, token k1,1 is the second token of morpheme m1. In 
the AT/AM scheme, k1,1 participates both in training and in-
ference (its target label is A). Thus, if k1,1 is identified as x

t
⋀ in 

Steps 2 and 3 and satisfies the test of Step 3, then wi (which 
is assigned to variable wd (x̂t)) will be the output word. 
However, in the AT/HM scheme, token k1,1 cannot participate 
in inference because it does not belong to an HM. Despite 
this, it will be involved in training with target label X.

5  |   EXPERIMENTATION

We experimentally measured the performance of our mod-
els. The results of performance comparison between ours and 
various other

5.1  |  Training data and BERT

We constructed a Korean tagged corpus that can be used for 
research on Korean ZAR. From Korean Wikipedia, many 
small text segments were extracted. Each segment comprised 
approximately 10 consecutive sentences and constituted 
a document, which is the unit of processing from the ZAR 
viewpoint. Furthermore, ZPs and their antecedents were 
tagged in all the documents. The characteristics of our ZAR 
tagged corpus are listed in Table 1.

Table 2 presents other details regarding our training data. 
We want to measure system performance using different 
sizes of search window. The third column shows the maxi-
mum number of words in a search window of the correspond-
ing size. The fourth and fifth columns show the number of 
anaphoric and non-anaphoric ZPs that exist in the entire 
tagged corpus, respectively. Anaphoricity depends on the 
given search window. The larger is the search window is, the 
smaller is the number of non-anaphoric ZPs. Notably, there 
exist many non-anaphoric ZPs even for a large size of search 
window. Thus, the approaches in [9] and [10] are problematic 
because their models aim at resolving only anaphoric ZPs.

We used three versions of BERT for our development and 
experimentation of our model. The first one is a BERT-base 
multi-lingual version, which was made publicly available 
by Google [34]. The other two are the Korean versions of 
BERT (called KorBERT) and were pre-trained using signif-
icant amount of Korean unlabeled texts [35]. One of the two 
Korean versions uses words as units in Segments A and B. In 
the other version, morphemes are units in Segment A and B 
of BERT. Table 3 lists the characteristics of our models that 
are based on BERT-base. We could not use BERT-large be-
cause it requires large memory in GPU. Had we used BERT-
large, the performance of our model might have increased by 
2% to 3%.

F I G U R E  8   Search windows of different sizes.

Document: s2 s1 s0

s3
S'0

ZP

WS = 2

WS = 3
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5.2  |  Experimental results

We aimed to develop the advanced search module depicted in 
Figure 2 to be used for ZAR. Because ZP detection is not in 
the scope of this study, we used gold ZPs in the tagged corpus 
as input to the search module in our experiments. Therefore, 
recall and precision are equal to a measure called accuracy, 
which is computed as follows:

For the system to produce a correct output for a given ZP, 
it should either find one of the (gold) antecedents of the ZP 
if the ZP is anaphoric, or report “no antecedents” if the ZP is 
non-anaphoric. Ten-fold cross validation was used in all our 
experimentations.

The models we experimented are named as follows. BERT 
versions are distinguished by the first two or three letters of 
model names. Google BERT is indicated by ZB, which re-
ceives only words as input. KorBERT that receives words as 
input is called KBw, and KorBERT that receives morphemes 
as input is named KBm. We use letters 1, 2, and L to de-
note the added architectures of a single layer, two layers, and 
LSTM-RNN, respectively. Finally, a string that denotes a 
token/morpheme scheme is appended (see Figure 10). For ex-
ample, KBmL-AT/AM denotes a model where KorBERT is 
used; morphemes are input units into segments; LSTM-RNN 
is added on the top of KorBERT; all the tokens of morphemes 
are used, and all the morphemes of words are used.

The performance-evaluation results for various models 
are presented in Table 4. The results can be interpreted as 
follows.

•	 Korean BERTs significantly outperformed Google BERT.
•	 Adding LSTM-RNN improved the performance over 

feed-forward layers.
•	 The AT approach is superior to the FT approach.
•	 Using all the morphemes results in better performance 

compared with using HMs only.

•	 The combined scheme of AT/AM achieves higher perfor-
mance than the other combinations.

•	 KBmL-AT/AM achieved the best performance with an ac-
curacy of 79.6% for the WS of 3, representing a significant 
improvement over other works thus far.

The size of layer B affects the model performance, as 
illustrated in Table 5. The size of 2048 results in the best 
performance.

Our search algorithm depicted in Figure 9 uses a threshold 
γ to find an antecedent. We measured the performance of our 
module while varying γ. The experimental result is depicted 
in Figure 11. The best performance was achieved when γ was 
0.85. This holds for all different sizes of the search window.

To build a ZAR system, we attempted to use two ma-
chine-learning models that were not based on BERT. One 
is an S-SVM, which can be considered one of the best ma-
chine-learning models widely used before the era of deep 
learning [6]. The other is a pointer network, which is a se-
quence-to-sequence deep-learning model that extensively ex-
ploits the attention mechanism [7]. It is one of the advanced 
deep-learning models. It was successfully used to perform 
co-reference resolution, which is a problem similar to ZAR 
in some aspects [8]. The pointer-network-based model used 
word embeddings created by running open-source utility fast-
Text [36]. An unlabeled text in Korean Wikipedia was sup-
plied to fastText to construct word embeddings. From Table 
6, it is evident that our BERT-based models outperformed 
the S-SVM-based and pointer-network models, respectively.

The drawback of BERT-based models is that they use a 
significant number of parameters, and thus they can be slow. 
In Table 6, the inference time (in milliseconds) for resolving a 
ZP is shown after the slash symbol (/). It is observed that they 
are more than approximately 15 times slower than the models 
that do not use BERT.

In Section 2, we described three recent research works 
on ZAR performed by other researchers [9–11]. These re-
searchers introduced deep-learning models that can be uti-
lized for developing the search module of ZAR. We trained 
and tested their models using the training data for Korean 
ZAR. The models were used to build the antecedent-search 
module in our experiment. The word embeddings used by 
these three models are the same as the one we used for the 
above-mentioned pointer-network model. Table 7 presents 
the performance comparison between these models and ours. 
This experiment indicates that our models significantly out-
perform other models.

There exist two approaches of exploiting a pre-trained 
BERT: fine-tuning and feature based [4]. Our models pro-
posed in this study follow the fine-tuning approach. In the 
feature-based approach, a pre-trained BERT is used for sup-
plying word embeddings but is not fine-tuned. The perfor-
mance comparison (in terms of accuracy) between both the 

(13)acc=
# of ZPs for which systems output is correct

# of ZPs processed by system
.

F I G U R E  9   Inference algorithm (antecedent search).
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approaches is presented in Table 8. Evidently, the fine-tuning 
approach outperforms the feature-based one.

6  |   DISCUSSIONS

Our model is appropriate for sequence labeling. The input 
is a sequence of words in the text. The output is a label se-
quence, where each output label is assigned to each token of 
the input sequence as depicted in Figure 12A. An output label 
at a position in the sequence is determined by considering the 
entire context of the text and labels at other positions, mean-
ing that all the tokens are simultaneously considered.

However, the models proposed in other works follow a 
candidate-wise approach [9–11]. They process one CA at a 
time separately, as depicted in Figure 12B. A label assigned 
to a CA does not affect the labels of otherCAs. Notably, the 
pointer network outperforms the systems in other works. The 
pointer network is a sequence model that comprises encoding 
and decoding sequences.

To ensure fairness while comparing the competing mod-
els and follow the recent trend of deep learning, the end-to-
end learning paradigm is enforced in the training and testing 
of all the models in our experimentations. The input to the 
models is no more than a word sequence that appears in the 
text. Handcrafted features were used in the past models in-
troduced in [9,10]. However, such features are not used to 
implement their models in our experiment (see Figure 7). 
Syntactic-analysis information was exploited in [11]. For a 
similar reason, such information is not used in our implemen-
tation of their model in [11] to conduct a performance com-
parison (see Table 7).

According to our experiments, our model performs better 
than other models in Korean ZAR. This might be attributed 
to the following.

•	 BERT is a general language representation model, which 
powerfully models the deep bidirectional contexts of a 
language.

•	 BERT is pre-trained using a large unlabeled corpus, and 
thus it can capture the predicate-argument semantics of a 
language.

•	 The deep-learning attention mechanism used by BERT 
(and Transformer) can model long-distance dependencies 
in the text.

•	 The sequence-labeling approach applied to ZAR is effec-
tive in utilizing contextual information.

To qualitatively evaluate our model, qualitative assess-
ment, such as indicating strengths and weaknesses, must be 
performed. Our model can achieve high performance, despite 
the fact that it is fine-tuned using small training data (com-
prises only 2881 ZPs). The performance can be further en-
hanced by increasing the size of the tagged corpus used for 
fine-tuning. Our model requires minimal feature-engineering 
for training and inference. Because the pre-training of BERT 
is unsupervised, the performance might be improved fur-
ther by increasing the size of unlabeled data. However, one 

T A B L E  2   Training-data statistics related with the size of search 
window.

Window size ZPs
Max 
length Anaphoric

Non-
anaphoric

0 2870 73 1034 1836

1 2870 93 1551 1319

2 2870 109 1801 1069

3 2870 124 1937 933

T A B L E  3   Specifications of our BERT-based model.

Pre-training Hidden layer size 768

Max. sequence length 512

Num. of layers 12

Num. of attention heads 12

Vocab. size (Google BERT) 105 879

Vocab. size (Korean BERT) 30 371

Num. of parameters 110 M

Fine-tuning Size of layer B 2 018

Size of layer O 2

Size of the hidden layer of LSTM 4096

Max. sequence length τm 512

F I G U R E  1 0   Various schemes of exploiting tokens and 
morphemes. (A) Word units are in segments. (B) Morpheme units are 
in segments.
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FT:
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T A B L E  1   Tagged corpus for Korean ZAR. The second row 
provides the number of items specified in the first row. (Doc: 
document)

Doc Sentence Word ZP
ZP/
doc

Sentence/
doc

532 3135 39 717 2881 5.37 5.88
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of the weaknesses of our approach is that constructing sig-
nificantly large tagged data requires considerable time and 
efforts. Second, useful heuristic information, which may be 
effective for improving the performance, is not exploited in 
our approach. Third, extensive computation is required for 
training and inference, and thus powerful hardware resources 
are required to develop and run the model.

Let us use two ZP problems depicted in Figure 13 as a 
case study to illustrate the working of our model. In Figure 
13A, a ZP occurs at word 시작하였다 because its subject is 
missing. All the words in the document are fed to Segment 
B because WS = 3. The models of past researches only con-
sidered NPs and usedhem as CAs. However, our model does 

not follow this approach. All the words in the search window 
are considered in our model. For example, word 지낸 is pro-
cessed even if it is a verb.

The first word 자르다리는 is tokenized to tokens 자, 르, 
다리, and 는_, as shown in the parentheses. The probabil-
ity PA of antecedent label of each token is computed by the 
model. The maximum PA of all the tokens from each word is 
shown just above the word in Figure 13.

The PA of token 다리 is maximum among the PA s of all 
the tokens in the input sequence. It is greater than threshold 
γ. Because 다리 belongs to word 자르다리는, 자르다리는 
is determined to be an antecedent. In this example, our model 
assigns significantly low PA to the tokens of words that are not 
antecedents. It assigns considerably high PA only to the tokens 
of a word that is an antecedent. This means that our model 
works correctly. Although there exist satisfactory candidates 
as antecedent, such as 부토가 and 대통령이, our model does 
not assign high PA to the tokens from them. This could be pos-
sible because BERT can utilize long-distance contexts.

Another ZP example is depicted in Figure 13B. A ZP occurs 
at predicate 도착했다. Because there is no token whose PA is 
greater than threshold γ = 0.85, the inference algorithm deter-
mines that there is no antecedent for the given ZP. This decision 
is correct. Our model avoided making a mistake of selecting 갈
릴레이의 as an antecedent. Furthermore, “갈릴레이가 도착
했다” is a fine sentence in Korean. However, in the context of 
this document, 갈릴레이 is not appropriate to be a subject of 
도착했다. There is no antecedent for the ZP in this document, 
and thus it is non-anaphoric. Our model is intelligent to make 
a correct decision for this hard problem, and this is surprising.

The end-to-end learning paradigm is adopted by our 
model, as previously mentioned. Raw text is supplied as 

T A B L E  7   Comparison among research works in terms of 
accuracy.

WS 0 1 2 3

Chen & Ng [9] 59.7 45.6 37.9 33.6

Yin et al. [10] 70.1 52.7 44.8 40.8

Iida et al. [11] 73.3 62.7 58.3 56.6

ZBL-AT 81.2 75.3 73.9 73.0

KBmL-AT/AM 85.8 80.5 79.8 79.6

T A B L E  4   Performance in terms of the accuracy of our models (γ 
= 0.85).

WS 0 1 2 3

ZB1-AT 80.6 70.4 66.9 66.1

ZB2-AT 81.0 72.0 68.5 66.9

ZBL-FT 78.2 67.5 61.9 61.1

ZBL-AT 81.2 75.3 73.9 73.0

KBw2-AT 86.1 77.4 77.1 75.3

KBwL-FT 84.7 76.7 76.4 76.0

KBwL-AT 86.1 79.6 78.8 77.9

KBmL-AT/HM 84.6 78.7 76.5 76.4

KBmL-AT/AM 85.8 80.5 79.8 79.6

T A B L E  5   Effect of the size of layer B on our model ZB2-AT.

Size of layer B 32 128 1024 2048 3072

WS = 0 78.0 78.8 79.6 81.0 81.1

WS = 1 68.2 68.8 70.6 72.0 70.6

WS = 2 61.9 62.4 67.1 68.5 68.0

WS = 3 59.5 60.2 65.5 66.9 66.9

T A B L E  6   Comparison between models with BERT and those 
without BERT. Each cell represents accuracy/inference time (ms).

WS 0 1 2 3

S-SVM 62.4/2 52.5/3 45.2/4 40.1/5

Pointer Net. 73.7/2 63.7/3 63.4/4 63.7/5

ZBL-AT 81.2/60 75.3/64 73.9/70 73.0/76

KBmL-AT/AM 85.8/63 80.5/70 79.8/77 79.6/82

F I G U R E  1 1   Performance curves obtained by varying threshold γ 
(WS: size of the search window). The model used is ZB2-AT.

0.620

0.640

0.660

0.680

0.700

0.720

0.740

0.760

0.780

0.800

0.820

0.05 0.35 0.65 0.85 0.95

Acc
WS = 0 WS = 1 WS = 2 WS = 3



      |  311KIM et al.

input to our algorithm. Subsequently, the algorithm pro-
duces a word as an answer. Our algorithm does not exploit 
information, such as parts of speech and parse trees. All 
the words (or morphemes) in the text of search window are 
treated in the same way without considering information, 
such as parts of speech and phrases. In other works, only 
NPs were chosen and considered as CAs during the pro-
cessing. However, all words are considered in our approach.

7  |   CONCLUSION

We presented a deep-learning model that could improve ZAR. 
Our main idea was to utilize a general language representation 
model called BERT. We chose fine-tuning as our approach of 

exploiting BERT. Beginning from a pre-trained BERT, which 
was publicly available, our model was fine-tuned using train-
ing data prepared from a Korean tagged corpus for ZAR.

We built various machine-learning models designed by us 
and others to make performance comparisons. The experi-
mental results showed that our model significantly improved 
the performance over other models. Moreover, our model 
complied with the end-to-end learning paradigm, which was 
not pursued by other works.

We plan to do research on employing deep-learning models 
for ZP detection in the future. Adding more advanced architec-
tures to BERT will also be pursued to improve the ZAR perfor-
mance of our BERT-based models. Building our ZAR models 
based on new advanced models, such as RoBERTa, ALBERT, 
and XLNet, is included in our future research plan [20–22].
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