• Title/Summary/Keyword: woody plant disease

Search Result 17, Processing Time 0.025 seconds

A LysM Domain-Containing Protein LtLysM1 Is Important for Vegetative Growth and Pathogenesis in Woody Plant Pathogen Lasiodiplodia theobromae

  • Harishchandra, Dulanjalee Lakmali;Zhang, Wei;Li, Xinghong;Chethana, Kandawatte Wedaralalage Thilini;Hyde, Kevin David;Brooks, Siraprapa;Yan, Jiye;Peng, Junbo
    • The Plant Pathology Journal
    • /
    • v.36 no.4
    • /
    • pp.323-334
    • /
    • 2020
  • Lysin motif (LysM) proteins are reported to be necessary for the virulence and immune response suppression in many herbaceous plant pathogens, while far less is documented in woody plant pathogens. In this study, we preliminarily characterized the molecular function of a LysM protein LtLysM1 in woody plant pathogen Lasiodiplodia theobromae. Transcriptional profiles revealed that LtLysM1 is highly expressed at infectious stages, especially at 36 and 48 hours post inoculation. Amino acid sequence analyses revealed that LtLysM1 was a putative glycoprotein with 10 predicted N-glycosylation sites and one LysM domain. Pathogenicity tests showed that overexpressed transformants of LtLysM1 displayed increased virulence on grapevine shoots in comparison with that of wild type CSS-01s, and RNAi transformants of LtLysM1 exhibited significantly decreased lesion length when compared with that of wild type CSS-01s. Moreover, LtLysM1 was confirmed to be a secreted protein by a yeast signal peptide trap assay. Transient expression in Nicotiana benthamiana together with protein immunoblotting confirmed that LtLysM1 was an N-glycosylated protein. In contrast to previously reported LysM protein Slp1 and OsCEBiP, LtLysM1 molecule did not interact with itself based on yeast two hybrid and co-immunoprecipitation assays. These results indicate that LtLysM1 is a secreted protein and functions as a critical virulence factor during the disease symptom development in woody plants.

Disease Management in Road Trees and Pepper Plants by Foliar Application of Bacillus spp. (Bacillus spp. 엽면살포에 의한 가로수 및 고추의 병 방제)

  • Chung, Joon-hui;Ryu, Choong-Min
    • Research in Plant Disease
    • /
    • v.22 no.2
    • /
    • pp.81-93
    • /
    • 2016
  • Out of plant-associated bacteria, certain plant growth-promoting bacteria (PGPB) have been reported to increase plant growth and productivity and to elicit induced resistance against plant pathogens. In this study, our objective was to broaden the range of applications of leaf-colonizing PGPB for foliar parts of road tress and pepper. Total 1,056 isolates of endospore-forming bacteria from tree phylloplanes were collected and evaluated for the enzymatic activities including protease, lipase, and chitinase and antifungal capacities against two fungal pathogens, Colletotrichum graminicola and Botrytis cinerea. Fourteen isolates classified as members of the bacilli group displayed the capacity to colonize pepper leaves after spraying inoculation. Three strains, 5B6, 8D4, and 8G12, and the mixtures were employed to evaluate growth promotion, yield increase and defence responses under field condition. Additionally, foliar application of bacterial preparation was applied to the road tress in Yuseong, Daejeon, South Korea, resulted in increase of chlorophyll contents and leaf thickness, compared with non-treated control. The foliar application of microbial preparation reduced brown shot-hole disease of Prunus serrulata L. and advanced leaf abscission in Ginkgo biloba L. Collectively, our results suggest that leaf-colonizing bacteria provide potential microbial agents to increase the performance of woody plants such as tree and pepper through spray application.

Screening for α-amylase Inhibitory Activities of Woody Plants

  • Lee, Wi Young;Park, Young Ki;Park, So Young;Ahn, Jin Kwon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.36-42
    • /
    • 2004
  • Inhibitors of α-amylase are important for the treatment of diabetes and obesity. Using enzyme inhibitor's activity, ethanolic extracts of 87 species in 12 families were screened and compared their inhibitory effect on α-amylase, As a results, we can find that extracts of Distylium racemosum, Acer tegmentosum, Corylapsis veitchiana, Cornus walteri and Corylapsis spicata showed higher α-amylase inhibitory activities than the others and have potential possibility of using control agents for carbohydrate-dependent disease.

Basil Tree, a New Host of Downy Mildew Pathogen Peronospora belbahrii

  • Lee, Hyun Ju;Lee, Jae Sung;Shin, Hyeon-Dong;Choi, Young-Joon
    • The Korean Journal of Mycology
    • /
    • v.46 no.3
    • /
    • pp.235-239
    • /
    • 2018
  • Basil (Ocimum spp.) is a popular herb grown worldwide. During the past fifteen years, a downy mildew pathogen has caused considerable damage to basil cultivations. In August 2017, downy mildew disease symptoms were found on Basil Tree (or long foot Basil Tree), which was developed by the grafting of two basil varieties and is a continuous harvest plant with a woody trunk. The present study reports the occurrence of downy mildew disease in basil Tree and identifies the causal pathogen, as Peronospora belbahrii.

Comparative Analyses of Four Complete Genomes in Pseudomonas amygdali Revealed Differential Adaptation to Hostile Environments and Secretion Systems

  • Jung, Hyejung;Kim, Hong-Seop;Han, Gil;Park, Jungwook;Seo, Young-Su
    • The Plant Pathology Journal
    • /
    • v.38 no.2
    • /
    • pp.167-174
    • /
    • 2022
  • Pseudomonas amygdali is a hemibiotrophic phytopathogen that causes disease in woody and herbaceous plants. Complete genomes of four P. amygdali pathovars were comparatively analyzed to decipher the impact of genomic diversity on host colonization. The pan-genome indicated that 3,928 core genes are conserved among pathovars, while 504-1,009 are unique to specific pathovars. The unique genome contained many mobile elements and exhibited a functional distribution different from the core genome. Genes involved in O-antigen biosynthesis and antimicrobial peptide resistance were significantly enriched for adaptation to hostile environments. While the type III secretion system was distributed in the core genome, unique genomes revealed a different organization of secretion systems as follows: type I in pv. tabaci, type II in pv. japonicus, type IV in pv. morsprunorum, and type VI in pv. lachrymans. These findings provide genetic insight into the dynamic interactions of the bacteria with plant hosts.

Halo Blight of Kudzu Vine Caused by Pseudomonas syringae pv. phaseolicola in Korea

  • Jeon, Yong-Ho;Chang, Sung-Pae;Kim, Sang-Gyu;Kim, Young-Ho
    • The Plant Pathology Journal
    • /
    • v.22 no.2
    • /
    • pp.119-124
    • /
    • 2006
  • Kudzu vine(Pueraria montana var. lobata) is an invasive climbing woody vine that envelops trees and shrubs, pressing physically and shutting out sunlight, which needs to be controlled. Kudzu vine pathogens were surveyed as a way to seek its biocontrol agents in 2002. Occurrence of a bacterial halo blight disease of kudzu vine was observed at several localities in Korea including Euiwang and Suwon in Gyeonggi Province, Daejon, and Gochang and Buan in Jeonbuk Province. Symptoms of brown to black spots with a surrounding yellowish halo appeared from June and lasted till the rainy season without much expansion, but accompanying often leaf blight and defoliation. Isolated bacteria were identified as Pseudomonas syringae pv. phaseolicola based on physiological and cultural characteristics, Biolog, fatty acid and 16S rDNA sequencing analyses. In artificial inoculation test, these bacteria produced the same halo spot symptoms on kudzu vine and bean plants. They also induced hypersensitive responses (HR) on tobacco, tomato, and chili pepper leaves. This is the first report of a bacterial disease of kudzu vine in Korea, and the bacterial pathogen can be used as a biocontrol agent against the pest plant.

Leaf Blight of Ailanthus altissiman Caused by Phytophthora boehmeriae

  • Kim, Jeom-Soon;Kim, Byung-Soo
    • The Plant Pathology Journal
    • /
    • v.20 no.2
    • /
    • pp.106-109
    • /
    • 2004
  • A leaf blight disease was found on Ailanthus altissiman growing in the Manchon Mountain Park in Daegu city. When isolated, the causal fungus readily formed sex organs, being homothallic. Oogonia were spherical, 19.5-42.9 ${\mu}{\textrm}{m}$ in diameter with an average of 29.4$\pm$4.2 ${\mu}{\textrm}{m}$. Antheridia were amphigynous, round to ovoid, and measured 11.3-15.0 ${\mu}{\textrm}{m}$ long and 12.5-14.5 ${\mu}{\textrm}{m}$ wide. Oospores in the oogonia were spherical, 26.1-29.0 ${\mu}{\textrm}{m}$ in diameter. Sporangia that formed in water were spherical to sub-spherical with a conspicuous papilla and measured 19.5-56.6 ${\times}$ 15.6-44.9 ${\mu}{\textrm}{m}$ with an average of 44.0$\pm$8.7${\times}$32.7$\pm$6.3 ${\mu}{\textrm}{m}$. The mean length/breadth (I/b) ratio was 1.35. Papillae were 3.9-11.7 ${\mu}{\textrm}{m}$l high and 3.9-9.8 ${\mu}{\textrm}{m}$ wide. Sporangia formed slowly on V8 juice agar medium when cultured under fluorescent light at 12-hour alternation. The sporangia that formed on the agar medium were more spherical and measured 26.5-39.0${\times}$23.4-35.1 ${\mu}{\textrm}{m}$ with an average of 33.6$\pm$3.4${\times}$28.2$\pm$3.2 ${\mu}{\textrm}{m}$ and I/b ratio of 1.19. Disease symptom was repro-duced by artificial inoculation of the healthy plants with the isolate. The causal organism was identified as Phyto-phthora boehmeriae on the basis of its morphological characteristics.

Comparison of the Apple Rootstock Cultivar with the MR5 Resistance Traits of Fire Blight Resistance (과수화상병 저항성 사과대목의 MR5보유 대목별 비교)

  • Young Hee Kwon;Won IL Choi;Hee Kyu Kim;Kyung Ok Kim;Ju Hyoung Kim
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2020.12a
    • /
    • pp.48-48
    • /
    • 2020
  • Fire blight, caused by Erwinia amylovora(Burrill), is a destructive disease of apple that damages blossoms, shoots, and woody plant organs. The fire blight disease is a worldwide problem for pome fruit growers because all popular apple cultivars are susceptible to the disease. Recently, fire blight of apple rootstocks has become a serious economic problem in high-density orchard systems in korea. The most commonly used dwarfing root stocks, M.9 and M.26, are highly susceptible to E. amylovora. The objective of the apple rootstock-breeding program has been to develop pomologically excellent rootstocks with resistance to abiotic and biotic stresses, including fire blight. Budagovsky 9 (B.9) apple rootstock is reported to be highly susceptible when inoculated with E. amylovora, although results from multiple trials showed that B.9 is resistant to rootstock blight infection in field plantings. So we tried to collect the apple rootstocks traits of fire blight resistance. The apple genotype Malus Robusta 5 (MR5) represents an ideal donor for fire blight resistance because it was described as resistant to all currently known European strains of the pathogen. The PCR for detecting the MR5 gene using the primers Md_MR5_FL_F/Md_MR5_FL_R. The results of these experiments confirmed some apple rootstocks traits of fire blight resistance showed the MR5. Furthermore, this gene is confirmed to be the resistance determinant of Mr5 as the transformed lines undergo the same gene-for-gene interaction in the host-pathogen relationship MR5-E. amylovora.

  • PDF

Effect of biocide addition on plantlet growth and contamination occurrence during the in vitro culture of blueberry

  • Huh, Yoon Sun;Lee, Joung Kwan;Kim, Ik Jei;Kang, Bo Goo;Lee, Ki Yeol
    • Journal of Plant Biotechnology
    • /
    • v.42 no.2
    • /
    • pp.111-116
    • /
    • 2015
  • Interest and great demand for blueberry (Vaccinium corymbosum) have increased, as V. corymbosum is now one of the most economically important crops in Korea. It is expected that blueberry production and the area planted for cultivation will increase consistently in the years ahead because of high profitability and the consumer's demand for healthy ingredients. Effective mass production of blueberry is urgently needed for commercial cultivation establishment, but a main limitation is lack of a propagation system that produces a disease-free plant material for commercial plantation. A large amount of research has focused entirely on developing tissue culture techniques for blueberry propagation. However, controlling fungal and bacterial contamination of woody plant material is extremely difficult. Our study was conducted to investigate the effect of biocide addition during the in vitro culture of blueberry on plantlet growth and contamination occurrence. Four biocides, including Plant Preservative Mixture ($PPM^{TM}$), vancomycin, nystatin and penicillin G, were used in varying concentrations during the in vitro propagation of blueberry. When nystatin was added into the medium at low concentrations, the overall growth of blueberry plantlets was retarded. Addition of vancomycin and penicillin G in high concentrations decreased contamination but induced plantlet mortality. On the other hand, when 1ml/L $PPM^{TM}$ was added, the growth characteristics of blueberry plantlets did not significantly differ from non-treatment (control), and the contamination occurrence rate was very low. From these results, we found that the addition of the appropriate biocide could provide an effective method to reduce contamination in the culture process, thereby raising in vitro production efficiency.