References
- Akcapinar, G. B., Kappel, L., Sezerman, O. U. and Seidl-Seiboth, V. 2015. Molecular diversity of LysM carbohydrate-binding motifs in fungi. Curr. Genet. 61:103-113. https://doi.org/10.1007/s00294-014-0471-9
- Alcântara, A., Bosch, J., Nazari, F., Hoffmann, G., Gallei, M., Uhse, S., Darino, M. A., Olukayode, T., Reumann, D., Baggaley, L. and Djamei, A. 2019. Systematic Y2H screening reveals extensive effector-complex formation. Front. Plant Sci. 10:1437. https://doi.org/10.3389/fpls.2019.01437
- Buist, G., Steen, A., Kok, J. and Kuipers, O. P. 2008. LysM, a widely distributed protein motif for binding to (peptido)glycans. Mol. Microbiol. 68:838-847. https://doi.org/10.1111/j.1365-2958.2008.06211.x
- Cao, H., Wang, C., Liu, H., Jia, W. and Sun, H. 2020. Enzyme activities during Benzo[a]pyrene degradation by the fungus Lasiodiplodia theobromae isolated from a polluted soil. Sci Rep. 10:865. https://doi.org/10.1038/s41598-020-57692-6
-
Chen, X.-L., Shi, T., Yang, J., Shi, W., Gao, X., Chen, D., Xu, X., Xu, J.-R., Talbot, N. J. and Peng, Y.-L. 2014. N-glycosylation of effector proteins by an
${\alpha}$ -1,3-mannosyltransferase is required for the rice blast fungus to evade host innate immunity. Plant Cell. 26:1360-1376. https://doi.org/10.1105/tpc.114.123588 - Chethana, K. W. T., Li, X., Zhang, W., Hyde, K. D. and Yan, J. 2016. Trail of decryption of molecular research on Botryosphaeriaceae in woody plants. Phytopathol. Mediterr. 55:147-171.
- Correia, K. C., Silva, M. A., de Morais, M. A. Jr., Armengol, J., Phillips, A. J. L., Câmara, M. P. S. and Michereff, S. J. 2016. Phylogeny, distribution and pathogenicity of Lasiodiplodia species associated with dieback of table grape in the main Brazilian exporting region. Plant Pathol. 65:92-103. https://doi.org/10.1111/ppa.12388
- de Jonge, R., van Esse, H. P., Kombrink, A., Shinya, T., Desaki, Y., Bours, R., van der Krol, S., Shibuya, N., Joosten, M. H. A. J. and Thomma, B. P. H. J. 2010. Conserved fungal LysM effector Ecp6 prevents chitin-triggered immunity in plants. Science 329:953-955. https://doi.org/10.1126/science.1190859
- El-Gebali, S., Mistry, J., Bateman, A., Eddy, S. R., Luciani, A., Potter, S. C., Qureshi, M., Richardson, L. J., Salazar, G. A., Smart, A., Sonnhammer, E. L. L., Hirsh, L., Paladin, L., Piovesan, D., Tosatto, S. C. E. and Finn, R. D. 2019. The Pfam protein families database in 2019. Nucleic Acids Res. 47:D427-D432. https://doi.org/10.1093/nar/gky995
- Fang, A., Han, Y., Zhang, N., Zhang, M., Liu, L., Li, S., Lu, F. and Sun, W. 2016. Identification and characterization of plant cell death-inducing secreted proteins from Ustilaginoidea virens. Mol Plant-Microbe Interact. 29:405-416. https://doi.org/10.1094/MPMI-09-15-0200-R
- Felix, C., Meneses, R., Goncalves, M. F. M., Tilleman, L., Duarte, A. S., Jorrin-Novo, J. V., Van de Peer, Y., Deforce, D., Van Nieuwerburgh, F., Esteves, A. C. and Alves, A. 2019. A multiomics analysis of the grapevine pathogen Lasiodiplodia theobromae reveals that temperature affects the expression of virulence- and pathogenicity-related genes. Sci. Rep. 9:13144. https://doi.org/10.1038/s41598-019-49551-w
- Goncalves, M. F. M., Nunes, R. B., Tilleman, L.,Van de Peer, Y., Deforce, D., Van Nieuwerburgh, F., Esteves, A. C. and Alves, A. 2019. Dual RNA sequencing of Vitis vinifera during Lasiodiplodia theobromae infection unveils host-pathogen interactions. Int. J. Mol. Sci. 20:6083. https://doi.org/10.3390/ijms20236083
- Gu, B., Kale, S. D., Wang, Q., Wang, D., Pan, Q., Cao, H., Meng, Y., Kang, Z., Tyler, B. M. and Shan, W. 2011. Rust secreted protein Ps87 is conserved in diverse fungal pathogens and contains a RXLR-like motif sufficient for translocation into plant cells. PLoS ONE 6:e27217. https://doi.org/10.1371/journal.pone.0027217
- Han, X. and Kahmann, R. 2019. Manipulation of phytohormone pathways by effectors of filamentous plant pathogens. Front. Plant Sci. 10:822. https://doi.org/10.3389/fpls.2019.00822
- Jacobs, K. A., Collins-Racie, L. A., Colbert, M., Duckett, M., Golden-Fleet, M., Kelleher, K., Kriz, R., La Vallie, E. R., Merberg, D., Spaulding, V., Stover, J., Williamson, M. J. and McCoy, J. M. 1997. A genetic selection for isolating cDNAs encoding secreted proteins. Gene 198:289-296. https://doi.org/10.1016/S0378-1119(97)00330-2
- Jones, J. D. G. and Dangl, J. L. 2006. The plant immune system. Nature 444:323-329. https://doi.org/10.1038/nature05286
- Klein, R. D., Gu, Q., Goddard, A. and Rosenthal, A. 1996. Selection for genes encoding secreted proteins and receptors. Proc. Natl. Acad. Sci. U. S. A. 93:7108-7113. https://doi.org/10.1073/pnas.93.14.7108
- Kombrink, A., Rovenich, H., Shi-Kunne, X., Rojas-Padilla, E., van den Berg, G. C. M., Domazakis, E., de Jonge, R., Valkenburg, D.-J., Sanchez-Vallet, A., Seidl, M. F. and Thomma, B. P. H. J. 2017. Verticillium dahliae LysM effectors differentially contribute to virulence on plant hosts. Mol. Plant Pathol. 18:596-608. https://doi.org/10.1111/mpp.12520
- Kombrink, A., Sanchez-Vallet, A. and Thomma, B. P. H. J. 2011. The role of chitin detection in plant-pathogen interactions. Microbes Infect. 13:1168-1176. https://doi.org/10.1016/j.micinf.2011.07.010
- Kombrink, A. and Thomma, B. P. H. J. 2013. LysM effectors: secreted proteins supporting fungal life. PLoS Pathog. 9:e1003769. https://doi.org/10.1371/journal.ppat.1003769
- Lee. S.-J. and Rose, J. K. C. 2012. A yeast secretion trap assay for identification of secreted proteins from eukaryotic phytopathogens and their plant hosts. Methods Mol. Biol. 835:519-530. https://doi.org/10.1007/978-1-61779-501-5_32
- Li, Q., Zhang, M., Shen, D., Liu, T., Chen, Y., Zhou, J.-M. and Dou, D. 2016. A Phytophthora sojae effector PsCRN63 forms homo-/hetero-dimers to suppress plant immunity via an inverted association manner. Sci. Rep. 6:26951. https://doi.org/10.1038/srep26951
- Liu, L., Xu, L., Jia, Q., Pan, R., Oelmuller, R., Zhang, W. and Wu, C. 2019. Arms race: diverse effector proteins with conserved motifs. Plant Signal. Behav. 14:1557008. https://doi.org/10.1080/15592324.2018.1557008
- Liu, T., Liu, Z., Song, C., Hu, Y., Han, Z., She, J., Fan, F., Wang, J., Jin, C., Chang, J., Zhou, J.-M. and Chai, J. 2012. Chitininduced dimerization activates a plant immune receptor. Science 336:1160-1164. https://doi.org/10.1126/science.1218867
-
Livak, K. J. and Schmittgen, T. D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the
$2^{-{\Delta}{\Delta}CT}$ method. Methods 25:402-408. https://doi.org/10.1006/meth.2001.1262 - Macho, A. P. and Zipfel, C. 2014. Plant PRRs and the activation of innate immune signaling. Mol. Cell 54:263-272. https://doi.org/10.1016/j.molcel.2014.03.028
- Marshall, R., Kombrink, A., Motteram, J., Loza-Reyes, E., Lucas, J., Hammond-Kosack, K. E., Thomma, B. P. H. J. and Rudd, J. J. 2011. Analysis of two in planta expressed LysM effector homologs from the fungus Mycosphaerella graminicola reveals novel functional properties and varying contributions to virulence on Wheat. Plant Physiol. 156:756-769. https://doi.org/10.1104/pp.111.176347
- Mentlak, T. A., Kombrink, A., Shinya, T., Ryder, L. S., Otomo, I., Saitoh, H., Terauchi, R., Nishizawa, Y., Shibuya, N., Thomma, B. P. H. J. and Talbot, N. J. 2012. Effector-mediated suppression of chitin-triggered immunity by Magnaporthe oryzae is necessary for rice blast disease. Plant Cell 24:322-335. https://doi.org/10.1105/tpc.111.092957
- Newman, M.-A., Sundelin, T., Nielsen, J. T. and Erbs, G. 2013. MAMP (microbe-associated molecular pattern) triggered immunity in plants. Front. Plant Sci. 4:139. https://doi.org/10.3389/fpls.2013.00139
- Oh, S.-K., Young, C., Lee, M., Oliva, R., Bozkurt, T. O., Cano, L. M., Win, J., Bos, J. I. B., Liu, H.-Y., van Damme, M., Morgan, W., Choi, D., Van der Vossen, E. A. G., Vleeshouwers, V. G. A. A. and Kamoun, S. 2009. In planta expression screens of Phytophthora infestans RXLR effectors reveal diverse phenotypes, including activation of the Solanum bulbocastanum disease resistance protein Rpi-blb2. Plant Cell 21:2928-2947. https://doi.org/10.1105/tpc.109.068247
- Paolinelli-Alfonso, M., Villalobos-Escobedo, J. M., Rolshausen, P., Herrera-Estrella, A., Galindo-Sanchez, C., Lopez-Hernandez, J. F. and Hernandez-Martinez, R. 2016. Global transcriptional analysis suggests Lasiodiplodia theobromae pathogenicity factors involved in modulation of grapevine defensive response. BMC Genomics 17:615. https://doi.org/10.1186/s12864-016-2952-3
- Rodriguez-Galvez, E., Maldonado, E. and Alves, A. 2015. Identification and pathogenicity of Lasiodiplodia theobromae causing dieback of table grapes in Peru. Eur. J. Plant Pathol. 141:477-489. https://doi.org/10.1007/s10658-014-0557-8
- Romero-Contreras, Y. J., Ramirez-Valdespino, C. A., Guzman-Guzman, P., Macias-Segoviano, J. I., Villagomez-Castro, J. C. and Olmedo-Monfil, V. 2019. Tal6 from Trichoderma atroviride is a LysM effector involved in mycoparasitism and plant association. Front. Microbiol. 10:2231. https://doi.org/10.3389/fmicb.2019.02231
- Rovenich, H., Zuccaro, A. and Thomma, B. P. H. J. 2016. Convergent evolution of filamentous microbes towards evasion of glycan-triggered immunity. New Phytol. 212:896-901. https://doi.org/10.1111/nph.14064
- Sanchez-Vallet, A., Saleem-Batcha, R., Kombrink, A., Hansen, G., Valkenburg, D.-J., Thomma, B. P. H. J. and Mesters, J. R. 2013. Fungal effector Ecp6 outcompetes host immune receptor for chitin binding through intrachain LysM dimerization. eLife 2:e00790. https://doi.org/10.7554/eLife.00790
- Schmitz, A. M., Pawlowska, T. E. and Harrison, M. J. 2019. A short LysM protein with high molecular diversity from an arbuscular mycorrhizal fungus, Rhizophagus irregularis. Mycoscience 60:63-70. https://doi.org/10.1016/j.myc.2018.09.002
- Selin, C., de Kievit, T. R., Belmonte, M. F. and Dilantha Fernando, W. G. 2016. Elucidating the role of effectors in plantfungal interactions: progress and challenges. Front. Microbiol. 7:600.
- Shimizu, T., Nakano, T., Takamizawa, D., Desaki, Y., Ishii-Minami, N., Nishizawa, Y., Minami, E., Okada, K., Yamane, H., Kaku, H. and Shibuya, N. 2010. Two LysM receptor molecules, CEBiP and OsCERK1, cooperatively regulate chitin elicitor signaling in rice. Plant J. 64:204-214. https://doi.org/10.1111/j.1365-313X.2010.04324.x
- Stergiopoulos, I. and de Wit, P. J. G. M. 2009. Fungal effector proteins. Annu. Rev. Phytopathol. 47:233-263. https://doi.org/10.1146/annurev.phyto.112408.132637
- Takahara, H., Hacquard, S., Kombrink, A., Hughes, H. B., Halder, V., Robin, G. P., Hiruma, K., Neumann, U., Shinya, T., Kombrink, E., Shibuya, N., Thomma, B. P. H. J. and O'Connell, R. J. 2016. Colletotrichum higginsianum extracellular LysM proteins play dual roles in appressorial function and suppression of chitin-triggered plant immunity. New Phytol. 211:1323-1337. https://doi.org/10.1111/nph.13994
- Thomma, B. P. H. J., Nurnberger, T. and Joosten, M. H. A. J. 2011. Of PAMPs and effectors: the blurred PTI-ETI dichotomy. Plant Cell 23:4-15. https://doi.org/10.1105/tpc.110.082602
- Urbez-Torres, J. R., Leavitt, G. M., Guerrero, J. C., Guevara, J. and Gubler, W. D. 2008. Identification and pathogenicity of Lasiodiplodia theobromae and Diplodia seriata, the causal agents of bot canker disease of grapevines in Mexico. Plant Dis. 92:519-529. https://doi.org/10.1094/PDIS-92-4-0519
- Urbez-Torres, J. 2011. The status of Botryosphaeriaceae species infecting grapevines. Phytopathol. Mediterr. 50:5-45.
- Win, J., Chaparro-Garcia, A., Belhaj, K., Saunders, D. G. O., Yoshida, K., Dong, S., Schornack, S., Zipfel, C., Robatzek, S., Hogenhout, S. A. and Kamoun. S. 2012. Effector biology of plant-associated organisms: concepts and perspectives. Cold Spring Harb. Symp. Quant. Biol. 77:235-247.
- Yan, J.-Y., Xie, Y., Zhang, W., Wang, Y., Liu, J.-K., Hyde, K. D., Seem, R. C., Zhang, G.-Z., Wang, Z.-Y., Yao, S.-W., Bai, X.-J., Dissanayake, A. J., Peng, Y.-L. and Li, X.-H. 2013. Species of Botryosphaeriaceae involved in grapevine dieback in China. Fungal Divers. 61:221-236. https://doi.org/10.1007/s13225-013-0251-8
- Yan, J. Y., Zhao, W. S., Chen, Z., Xing, Q. K., Zhang, W., Chethana, K. W. T., Xue, M. F., Xu, J. P., Phillips, A. J. L., Wang, Y., Liu, J. H., Liu, M., Zhou, Y., Jayawardena, R. S., Manawasinghe, I. S., Huang, J. B., Qiao, G. H., Fu, C. Y., Guo, F. F., Dissanayake, A. J., Peng, Y. L., Hyde, K. D. and Li, X. H. 2018. Comparative genome and transcriptome analyses reveal adaptations to opportunistic infections in woody plant degrading pathogens of Botryosphaeriaceae. DNA Res. 25:87-102. https://doi.org/10.1093/dnares/dsx040
- Zeng, T., Rodriguez-Moreno, L., Mansurkhodzaev, A., Wang, P., van den Berg, W., Gasciolli, V., Cottaz, S., Fort, S., Thomma, B. P. H. J., Bono, J.-J., Bisseling, T. and Limpens, E. 2020. A lysin motif effector subverts chitin-triggered immunity to facilitate arbuscular mycorrhizal symbiosis. New Phytol. 225:448-460. https://doi.org/10.1111/nph.16245
- Zipfel, C. 2014. Plant pattern-recognition receptors. Trends Immunol. 35:345-351. https://doi.org/10.1016/j.it.2014.05.004