• Title/Summary/Keyword: wood tar

Search Result 30, Processing Time 0.03 seconds

Weathering of Larch Wood treated with Wood tar and Wood vinegar (목타르와 목초액로 처리한 낙엽송재의 Weathering 특성)

  • Kwon, Gu-Joong;Kwon, Sung-Min;Jang, Jae-Hyeok;Chun, Kun-Woo;Kim, Nam-Hun
    • Journal of Forest and Environmental Science
    • /
    • v.27 no.1
    • /
    • pp.55-60
    • /
    • 2011
  • This study has been carried out to investigate the preservation characteristics and weathering of larch wood treated with wood tar and wood vinegar, neglected under the circumstance of outdoor exposure, buried under ground, and deposited under water. Earlywood cell wall observed by optical microscope has been collapsed due to the fungi deterioration. This phenomenon occurred more frequently in the case of woods treated with wood tar and buried under ground. Relative crystallinity of woods treated with wood tar, exposed outdoors, and untreated wood buried under ground was highest at 63% while wood tar treated wood buried under ground was lowest at 46%.

Strenghts and Hardening Properties of Epoxy-modififed Mortars Using Wood-Tar of Wood By-Product (목재 부산물인 목타르를 활용한 에폭시수지 혼입 PMM의 강도 및 경화특성)

  • Kim, Joo-Young;Ham, Seong-Min;Kim, Wan-Ki
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.21-22
    • /
    • 2014
  • The purpose of this study is to ascertain strengths and hardening rate of epoxy-modified mortar with wood-tar contents. The polymer-modified mortars (PMMs) using epoxy resin with wood-tar are prepared with various polymer-binder ratios of 1, 3, 5% and wood-tar contents of 0, 5, 10, 15 and 20%. The PMMs using epoxy resin are tested for compressive, flexural and tensile strengths and hardening rate of epoxy resin. As a result, the strengths and hardening rate under polymer-binder ratio 1% and wood-tar content of 5% are more excellent than those of other specimens.

  • PDF

Characteristics of Wood Tar Produced as Byproduct from Two Types of The Kiln in The Manufacture of Oak Charcoal

  • Yang, Bong Suk;Yang, Jiwook;Kim, Dae-Young;Kim, Jin-Kyu;Hwang, Won-Jung;Kwon, Gu-Joong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.6
    • /
    • pp.772-786
    • /
    • 2017
  • This study investigated the characteristics of wood tar, produced as a byproduct during the production of charcoal using oak wood by the modified traditional kiln and mechanical steel kiln. The wood tar was analyzed with a number of techniques, including Py-GC/MS, NMR, MALDI-TOF, FT-IR, TG and DSC. The Py-GC/MS analysis indicated that modified traditional kiln generated a higher hydrocarbon ratio in the wood tar than that of mechanical steel kiln. On the other hand, mechanical steel kiln resulted in a higher proportion of phenolic and aromatic hydrocarbon components than that of modified traditional kiln. Those results were also confirmed by NMR analysis. The MALDI-TOF analysis suggested that the wood tar produced in the mechanical steel kiln had a slightly higher molecular weight than the wood tar produced in the modified traditional kiln. In addition, the FT-IR analysis showed characteristic peak of symmetrical stretching vibration of $CH_3$ from the modified traditional kiln while characteristic peaks of the C-C and C-O stretching vibration were observed from the mechanical steel kiln. Moreover, TG and DSC analysis suggested that the mechanical steel kiln is more thermally stable than that of modified traditional kiln. Those findings clearly showed that the method of making charcoal greatly affects the properties of wood tar.

Manufacture of Wood Tar-based Phenol Adhesives and Adhesive Properties (목타르계 페놀접착제의 제조 및 접착성능)

  • Park Sang-Bum;Kim Su-Won;Park Byung-Dae;Han Tae-Hyung;Kang Eun-Chang;Park Jong-Young;Mun Sung-Phil
    • Journal of Korea Foresty Energy
    • /
    • v.24 no.1
    • /
    • pp.33-38
    • /
    • 2005
  • To find a new use of wood tar which is obtained from the manufacturing process of wood charcoal, a resol type of phenol adhesive using wood tar was made and some adhesion tests on plywood were examined. Phenol adhesive synthesized with pine tar was almost same as an original phenol adhesive in physical properties such as solid content and viscosity and tensile-shear adhesive strength of plywood made of phenol adhesive synthesized with pine tar was not much lower than the original one in non-waterproof and waterproof tests. Phenol adhesive synthesized with oak tar, however, was different from original phenol adhesive in physical properties. Adhesive strength of plywood made of oak tar was $50\%$ lower than the original one on waterproof tests. The amount of emitted formaldehyde increased as the amount of wood tar increased.

  • PDF

Characteristics of Pellet Prepared from Sawdust and Wood-tar (목타르와 톱밥을 혼합하여 제조한 펠릿의 특성)

  • Kwon, Gu-Joong;Kwon, Sung-Min;Cha, Du-Song;Kim, Nam-Hun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.1
    • /
    • pp.36-42
    • /
    • 2010
  • This study has been carried out to investigate the characteristics of pellets manufactured from sawdust, and a mixture of liquid wood-tar and sawdust. Pellets were prepared at room temperature under 2000 kgf/$cm^2$ using an universal testing machine. The pellets prepared from Q. variabilis wood had slightly higher density than those prepared from P. densiflora wood. The amount of fine particles from Q. variabilis wood pellets was smaller than those from P. densiflora wood. The pellets from P. densiflora wood had higher heating values than those from Q. variabilis wood. The wood pellets manufactured with wood tar showed higher moisture content, density and heating value, but lower fine particles. From the experimental results, it is suggested that wood tar can be used to obtain the higher quality wood pellets.

Adhesive Properties of Phenol Resin Adhesive Mixed with Wood Tar (목타르 혼합 페놀수지접착제의 접착성능)

  • Park Sang-Bum;Kim Su-Won;Park Byung-Dae;Han Tae-Hyung;Kang Eun-Chang;Park Jong-Young;Mun Sung-Phil
    • Journal of Korea Foresty Energy
    • /
    • v.24 no.1
    • /
    • pp.28-32
    • /
    • 2005
  • This study was performed to find a new use of wood tar from the manufacturing process of wood charcoal. Plywoods made of phenol adhesives mixed with wood tar were manufactured, and physical, mechanical properties and formaldehyde emission were investigated. Plywoods made of phenol adhesives mixed with wood tar were almost same as an original phenol adhesive in physical and mechanical properties and tensile-shear adhesive strength of the plywood was higher than the original one in both non-waterproof and waterproof tests. Formaldehyde emission was lower as the amount of wood tar increased in phenol adhesive.

  • PDF

Evaluating The Fuel Characteristics of Wood Pellets Fabricated with Wood Tar and Starch as An Additive (목타르와 전분 첨가제 혼합에 따른 목재펠릿 품질특성 평가)

  • Ahn, Byoung-Jun;Lee, Soo-Min
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.3
    • /
    • pp.318-326
    • /
    • 2014
  • This study was conducted to investigate the potential of non-used forest biomass residues as raw materials for making wood pellets with additives such as wood tar and starch and to evaluate fuel characteristics of the pellets. Wood tar, a by-product provided from the carbonization process of wood, could be a suitable additive for wood pellet production due to its higher calorific value and lower hazardous heavy metals, such as cadmium and mercury, compared to woody biomass. When the wood tar (10 wt%) was added, the calorific value was increased from 4,630 kcal/kg (wood pellet without additive) to 4,800 kcal/kg (wood pellet with additive). With the increase of additive amount into wood pellet, the length and individual density of wood pellet increased. In addition, bulk density of the pellets was increased, whereas the fine content was decreased. Consequently the overall productivity of wood pellets was improved by adding 2 w% additives into wood pellets; the percentage of productivity increase was 5.9% and 4.9% for adding starch and wood tar, respectively.

Manufacturing of Wood Charcoal Cup by Using Carbonization Method and Its Water Repellency (목재를 이용한 무할렬 숯잔 제조 및 발수특성)

  • Park, Sang Bum;Lee, Min
    • Journal of the Korea Furniture Society
    • /
    • v.25 no.3
    • /
    • pp.207-212
    • /
    • 2014
  • With increased interests in environmental issues, people are looking for new materials that serve special and bio-activated functions. One of interesting materials is charcoal which has excellent adsorption ability for harmful volatile organic compounds, fireproof performance, far-infrared ray emission, and electromagnetic shielding. Since non-crack carbonized board was developed from wood-based composite materials, carbonization method might be applied to woodcraft products such as wood cup and bamboo. In this study, manufacture of wood charcoal bowl was conducted with carbonization method developed in 2009 in order to activate wood products market. Ash tree(Fraxinus rhynchophylla) cup was carbonized at $600^{\circ}C$ with two pretreatments which were phenol resin and wood tar solution treatment. After carbonization of ash tree cup, non-crack charcoal cup were successfully manufactured. Phenol resin treatment affected on charcoal cup manufacturing both positively and negatively. For a positive way, it prevented shrinkage. For a negative way, it decreased water repellency. On the contrary, wood tar treatment accelerated shrinkage a bit and increased water repellency. Based on the results, wood tar can be used as pre-treatment solution for reducing post-treatment costs. We confirmed woodcraft products can be carbonized without deformation, so carbonization may provide a high value-added products from wood.

  • PDF

Removal of Air Pollutants from Charcoal Production Process Exhaust (숯 제조공정에서 발생하는 대기오염물질의 제거기술)

  • Park, Seong-Kyu;Choi, Sang-Jin;Kim, Daekuen;Hwang, Ui-Hyun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.4
    • /
    • pp.350-361
    • /
    • 2014
  • Exhaust gas containing wood tar of high concentration is discharged from charcoal production kilns. The large amount of emissions are often found by operational failure. The purpose of this study is to investigate the performance of an integrated treatment system in treating charcoal production exhaust. The system, which combined a tar collection device and a post-combustion unit, was proposed to remove moisture, wood tar, particulate matter, and other gas-phase pollutants (CO, $CH_4$, total hydrogen carbons) from exhaust gases. Heat recovery units were also applied in the system to utilize waste heat.

The Formation Characteristics of Tar, Ash and Clinker due to Combustion of Wood Pellet and Performance Analysis of Wood Pellet Boiler in terms of the Moisture Contents Change of the Wood Pellet (목재펠릿 연소 시 발생하는 타르, 재, 클링커 생성 특성 분석 및 함수율 변화에 따른 목재펠릿보일러의 성능 연구)

  • Euh, Seung Hee;Oh, Kwang Cheol;Oh, Jae Heun;Kim, Dae Hyun
    • Journal of Energy Engineering
    • /
    • v.23 no.3
    • /
    • pp.211-220
    • /
    • 2014
  • This study reports the formation characteristics of tar, ash and clinker due to a wood pellet grade and the performance analysis of wood pellet boiler in terms of the moisture contents change of the wood pellet. Tar was accumulated on the heating surface according to combustion of wood pellet, the ash was yielded on the floor of combustion chamber in a wood pellet boiler and the clinker was solidified at the burner due to combustion of the 3rd grade wood pellet. Especially, the moisture contents is important factor to define the grade. Wood of logging residues has a non-uniform moisture contents after the field process, yields of tar, ash and clinker are increased in case of combustion due to the high ash contents. For these reasons, emission of harmful compounds in the exhaust gas, decrease of boiler efficiency and the system operating errors are observed. In the performance analysis of wood pellet boiler in terms of the moisture contents change of the 1st grade wood pellet, the boiler efficiency was reduced by 27.08% with 6.6% moisture contents increase. The optimum moisture contents of wood pellet is needed to improve the boiler performance and efficiency.