• Title/Summary/Keyword: wood composite

Search Result 275, Processing Time 0.027 seconds

Thermal behavior of Flame Retardant Filled PLA-WF Bio-Composites

  • Choi, Seung-Woo;Lee, Byoung-Ho;Kim, Hyun-Joong;Kim, Hee-Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.2
    • /
    • pp.155-163
    • /
    • 2009
  • This study examined the thermal stability of PLA-WF bio-composites. Wood flour (WF)-filled PLA bio-composites were reinforced with the flame retardants, Melamine pyrophosphate (MPP), resorcinol bis (diphenyl phosphate) (RDP) and zinc borate (ZB). The flame retardant was compounded with PLA and natural biodegradable filler. The thermal properties of the biodegradable polymer and bio-composites reinforced with the flame retardant were measured and analyzed by DSC, DMA and TGA. The results showed that the flame retardant-reinforced biodegradable bio-composite exhibited improved thermal properties.

Fatigue behavior of circular hollow tube and wood filled circular hollow steel tube

  • Malagi, Ravindra R.;Danawade, Bharatesh A.
    • Steel and Composite Structures
    • /
    • v.19 no.3
    • /
    • pp.585-599
    • /
    • 2015
  • This paper presents the experimental work on fatigue life and specific fatigue strength of circular hollow sectioned steel tube and wood filled circular hollow section steel tube. Burning effect was observed in the case of circular hollow sectioned steel tube when it is subjected to Maximum bending moment of 19613.30 N-mm at 4200 rpm, but this did not happen in the case of wood filled hollow section. Statistical analysis was done based on the experimental data and relations have been built to predict the number of cycles for the applied stress or vice versa. The relations built in this paper can safely be applied for design of the fatigue life or fatigue strength of circular hollow sections and wood filled hollow sections. Results were validated by static specific bending strengths determined by ANSYS using a known applied load.

Influence of a Novel Mold Inhibitor on Mechanical Properties and Water Repellency of Bamboo Fiber-based Composites

  • Qi, Yue;Huang, Yu-Xiang;Ma, Hong-Xia;Yu, Wen-Ji;Kim, Nam-Hun;Zhang, Ya-Hui
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.3
    • /
    • pp.336-343
    • /
    • 2019
  • Effects of a novel mold inhibitor specifically for bamboo, on the properties of composite products have been confirmed in this study. The mechanical and dimensional stability properties of bamboo fiber-based composites (BFBCs) from different bamboo species were also investigated. The results showed that Burmanica Gamble possessed the highest values of modulus of elasticity (MOE) of 33.2 GPa, modulus of rupture (MOR) of 286.9 MPa, compressive strength of 182.6 MPa and shear strength of 24.0 MPa. By contrast, Phyllostochys heterocycla among all of species showed the lowest MOE of 16.3 GPa, MOR of 170.3 MPa and compressive strength of 128.9 MPa were the lowest among all of species. Moreover, there is a remarkable variation in the swelling and water absorption between the samples with 4 h and 28 h water immersion treatment, especially Phyllostachys iridenscens. Overall, the results suggested that TCIT (Tebuconazole and 3(2H)-isothiazolone) had no significant effect on the mechanical properties compared with the control condition, and it would be utilized as an antimould of BFBCs manufacturing.

Effect of Green Tea Content on Static Bending Strength Performance of Hybrid Boards Composed of Green Tea and Wood Fibers (녹차-목재섬유복합보드의 정적 휨 강도성능에 미치는 녹차배합비율의 영향)

  • Park, Han-Min;Kang, Dong-Hyun;Lim, Na-Rea;Lee, Soo-Kyeong;Jung, Kang-Won;Kim, Jong-Chul;Cho, Kyeong-Hwan
    • Journal of agriculture & life science
    • /
    • v.44 no.5
    • /
    • pp.1-8
    • /
    • 2010
  • In this study, eco-friendly hybrid composite boards were manufactured from green tea and wood fibers for application as interior materials with various functionalities of green tea and strong strength properties of wood fibers. In this relation, the effect of green tea content on the static bending strength performances of these green tea and wood fibers composite boards were investigated. Static bending strengths of hybrid composite boards were lower than those of control boards and decreased with the increase of green tea content. Also, the strength performances appeared to be somewhat different by resin type used for board manufacture. The hybrid composite boards manufactured from $E_1$ grade urea resin adhesive, which has higher molar ratio of formaldehyde to urea than that of $E_0$ grade one, were 1.08~1.53 times higher in bending modulus of elasticity (MOE) and 1.19~1.82 higher in modulus of rupture (MOR) than that manufactured from $E_0$ grade. And, the differences of MOE and MOR between hybrid composite boards manufactured from $E_0$ grade and $E_0$ grade urea resin adhesive increased with the increase of green tea content. In the case of hybrid composite boards manufactured from $E_1$ grade urea resin adhesive, the MOR was within 0.94~1.03 times the commercial medium density fiberboard. Thus, it was thought that eco-friendly hybrid composite boards with various functionalities and strong strength performances could be manufactured from green tea and wood fibers.

Characterization of Electrospun Nanofibers of Cellulose Nanowhisker/Polyvinyl Alcohol Composites

  • Cho, Mi-Jung;Park, Byung-Dae;Kadla, John F.
    • Journal of the Korean Wood Science and Technology
    • /
    • v.40 no.2
    • /
    • pp.71-77
    • /
    • 2012
  • Cellulose nanowhisker (CNW) isolated from hardwood bleached kraft pulp (HW-BKP) using sulfuric acid hydrolysis was suspended in polyvinyl alcohol (PVA) and electrospun into composites nanofibers. Transmission electron microscopy (TEM) revealed the CNW to be rod-like, approximately of $16.1{\pm}4.6$ nm wide and $194{\pm}61$ nm long, providing an aspect ratio of about 12, with a particle size distribution range of $662.2{\pm}301.2$ nm. Uniform and high quality CNW/PVA composite nanofibers were successfully manufactured by the electrospinning method. As the CNW loading increases, the viscosity of CNW/PVA solutions shows a minimum at 1% CNW level which subsequently results in the smallest diameter (193 nm) of electrospun nanofibers. The average diameter of the nanofibers increased up to 284 nm with increasing CNW loading. These results suggest that the electrospinning method provides a great potential of manufacturing consistent and reliable nanofibers from CNW/PVA solution for the formation of scaffolds with potentials in future application.

Weathering and Termite Resistance of Woodflour-Recycled Polypropylene Composites in Tropical Region

  • Febrianto, Fauzi;Sulaeman, Rudianda;Karina, Myrtha;Ashaari, Zaidon;Hadi, Yusuf Sudo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.34 no.5
    • /
    • pp.88-97
    • /
    • 2006
  • Wood flour (WF)-recycled polypropylene (RPP) composites composed of 50% WF of Eucalyptus deglupta Blume species, 50% RPP, various contents of maleic anhydride (MAH) modifier (0; 1; 2; 5; 5; 7.5; and lo%), and 15% dicumyl peroxide (DCP) initiator (based on MAH weight) were subjected to weather for 1 year and subterranean termite (Coptotermes cuwignathus HOLMGREN) and dry wood termite (Cryptotermes cynocephalus LIGHT) for 3 and 4 weeks, respectively. WF-RPP composites with 2.5% MA modifier had tensile strength, breaking elongation and Young's modulus about 2.2, 2.3, and 1.2 times, respectively higher compared to MAH-free composites. The WF-RPP composites with or without MAH modifier had 5.5 times higher resistance to weather compared to RPP film alone. The color of the WF-RPP composites with or without MAH modifier became lighter after exposures to the weather. The WF-RPP composites with or without MAH modifier are resistant to subterranean termite Coptotermes curvignathus HOLMGREN and dry wood termite Cryptotermecs cynocephalus LIGHT under the experimental condition adopted.

Influence of Hydrolytic Degradation on the Morphology of Cured Urea-Formaldehyde Resins of Different Formaldehyde/Urea Mole Ratios

  • Park, Byung-Dae;Jeong, Ho-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.2
    • /
    • pp.179-186
    • /
    • 2011
  • In an effort to understand the hydrolytic degradation process of cured urea-formaldehyde (UF) resins responsible for the formaldehyde emission of wood-based composite panels, this study analyzed the influence of acid hydrolysis on the morphology of cured UF resins with different formaldehyde/urea (F/U) mole ratios such as 1.6, 1.4, 1.2 and 1.0. Field emission-scanning electron microscopy (FE-SEM) was employed to observe both exterior and fracture surfaces on thin films of cured UF resins before and after the etching with hydrochloric acid as a simulation of the hydrolytic degradation process. FE-SEM images showed that the exterior surface of cured UF resin with the F/U mole ratio of 1.0 had spherical structures after the acid hydrolysis while the other cured UF resins were not the case. However, the fracture surface observation showed that all the samples possessed spherical structures in the cured state of UF resins although their occurrence and size decreased as the F/U mole ratio increased. For the first time, we found the spherical structures in cured UF resins of higher F/U mole ratio of 1.4. After the acid hydrolysis, the spherical structures became a much predominant at the fracture surface. These results indicated that the spherical structures in cured UF resinswere much more resistant to the hydrolytic degradation by the acid than amorphous region.

Leachability of Zinc Borate-Modified Oriented Strandboard (OSB)

  • Lee, Sun-Young;Wu, Qinglin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.5
    • /
    • pp.46-57
    • /
    • 2007
  • The leachability of boron in zinc borate (ZB)-modified oriented strandboard (OSB) from southern wood species was investigated in this study. The leaching experiments were conducted by exposing edge-sealed OSB samples under running water at $31^{\circ}C$ for 8, 24, 72, and 216 h. The results from leached samples were compared with those from the unleached controls. Boron leaching of the modified OSB occurred upon the initial water exposure, and the leaching rate decreased as the leaching time increased. Initial boric acid equivalent (BAE) level, wood species, and sample thickness swelling significantly influenced the leachability. There was no consistent effect of polyethylene glycol (PEG) on zinc borate leaching. The glue-line washing within OSB due to thickness swelling of the test samples under water and decomposition of the borate to form water-soluble boric acid were thought to be two possible causes for the observed leaching. The relationship between assayed BAE and leaching time followed a decaying exponential function for zinc borate treated OSB. From the boron/zinc ratio after each leaching period, boron element in ZB was more or less leachable. The material constant of the regression models allowed comparing the leachability of the modified OSB for various wood species. An unified leaching method for treated wood composite materials is needed.

Hydrolytic Stability of Cured Urea-Melamine-Formaldehyde Resins Depending on Hydrolysis Conditions and Hardener Types

  • Park, Byung-Dae;Lee, Sang-Min
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.5
    • /
    • pp.672-681
    • /
    • 2015
  • As a part of abating the formaldehyde emission of amino resin-bonded wood-based composite panels, this study was conducted to investigate hydrolytic stability of urea-melamine-formaldehyde (UMF) resin depending on various hydrolysis conditions and hardener types. Commercial UMF resin was cured and ground into a powdered form, and then hydrolyzed with hydrochloric acid. After the acid hydrolysis, the concentration of liberated formaldehyde in the hydrolyzed solution and mass loss of the cured UMF resins were determined to compare their hydrolytic stability. The hydrolysis of cured UMF resin increased with an increase in the acid concentration, time, and temperature and with a decrease in the smaller particle size. An optimum hydrolysis condition for the cured UMF resins was determined as $50^{\circ}C$, 90 minutes, 1.0 M hydrochloric acid and $250{\mu}m$ particle size. Hydrolysis of the UMF resin cured with different hardener types showed different degrees of the hydrolytic stability of cured UMF resins with a descending order of aluminum sulfate, ammonium chloride, and ammonium sulfate. The hydrolytic stability also decreased as the addition level of ammonium chloride increased. These results indicated that hardener types and level also had an impact on the hydrolytic stability of cured UMF resins.

Microstructure of Cured Urea-Formaldehyde Resins Modified by Rubber Latex Emulsion after Hydrolytic Degradation

  • Nuryawan, Arif;Park, Byung-Dae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.5
    • /
    • pp.605-614
    • /
    • 2014
  • This study investigated microstructural changes of cured urea-formaldehyde (UF) resins mixed with aqueous rubber latex emulsion after intentional acid etching. Transmission electron microscopy (TEM) was used in order to better understand a hydrolytic degradation process of cured UF resins responsible for the formaldehyde emission from wood-based composite panels. A liquid UF resin with a formaldehyde to urea (F/U) molar ratio 1.0 was mixed with a rubber latex emulsion at three different mixing mass ratios (UF resin to latex = 30:70, 50:50, and 70:30). The rate of curing of the liquid modified UF resins decreased with an increase of the rubber latex proportion as determined by differential scanning calorimetry (DSC) measurement. Ultrathin sections of modified and cured UF resin films were exposed to hydrochloric acid etching in order to mimic a certain hydrolytic degradation. TEM observation showed spherical particles and various cavities in the cured UF resins after the acid etching, indicating that the acid etching had hydrolytically degraded some part of the cured UF resin by acid hydrolysis, also showing spherical particles of cured UF resin dispersed in the latex matrix. These results suggested that spherical structures of cured UF resin might play an important role in hindering the hydrolysis degradation of cured UF resin.