Browse > Article
http://dx.doi.org/10.5658/WOOD.2012.40.2.71

Characterization of Electrospun Nanofibers of Cellulose Nanowhisker/Polyvinyl Alcohol Composites  

Cho, Mi-Jung (Department of Wood Science and Technology, Kyungpook National University)
Park, Byung-Dae (Department of Wood Science and Technology, Kyungpook National University)
Kadla, John F. (Department of Wood Science, University of British Columbia)
Publication Information
Journal of the Korean Wood Science and Technology / v.40, no.2, 2012 , pp. 71-77 More about this Journal
Abstract
Cellulose nanowhisker (CNW) isolated from hardwood bleached kraft pulp (HW-BKP) using sulfuric acid hydrolysis was suspended in polyvinyl alcohol (PVA) and electrospun into composites nanofibers. Transmission electron microscopy (TEM) revealed the CNW to be rod-like, approximately of $16.1{\pm}4.6$ nm wide and $194{\pm}61$ nm long, providing an aspect ratio of about 12, with a particle size distribution range of $662.2{\pm}301.2$ nm. Uniform and high quality CNW/PVA composite nanofibers were successfully manufactured by the electrospinning method. As the CNW loading increases, the viscosity of CNW/PVA solutions shows a minimum at 1% CNW level which subsequently results in the smallest diameter (193 nm) of electrospun nanofibers. The average diameter of the nanofibers increased up to 284 nm with increasing CNW loading. These results suggest that the electrospinning method provides a great potential of manufacturing consistent and reliable nanofibers from CNW/PVA solution for the formation of scaffolds with potentials in future application.
Keywords
cellulose nanowhisker; electrospinning; nanofibers; polyvinyl alcohol; fiber diameter;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Jeong, J. S., J. S. Moon, S. Y. Jeon, J. H. Park, P. S. Alegaonkar, and J. B. Yoo. 2007. Mechanical properties of electrospun PVA/MWNTs composite nanofibers. Thin Solid Films 515: 5136-5141.   DOI   ScienceOn
2 Kvien, I., B. S. Tanem, and K. Oksman. 2005. Characterization of cellulose whiskers and their nanocomposites by atomic force and electron microscopy, Biomacromolecules 6: 3160-3165.   DOI   ScienceOn
3 Li, L. and Y.-L. Hsieh. 2006. Chitosan biocomponent nanofibers and nanoporous fibers. Carbohyd. Res. 341: 374-381.   DOI   ScienceOn
4 Marchessault, R. H., F. F. Morehead, and N. M. Walter. 1959. Liquid crystal systems from fibrillar polysaccharides, Nature 184: 632-633.   DOI
5 Park, S., J. O. Baker, M. E. Himmel, P. A. Parilla, and D. K. Johnson. 2010. Cellulose crystallinity index: measurement techniques and their impact of interpreting cellulose performance, Biotechnology for Biofuels 3: 10.   DOI   ScienceOn
6 Peresin, M. S., Y. Habibi, J. O. Zoppe, J. J. Pawlak, and O. J. Rojas. 2010. Nanofiber composites of polyvinyl alcohol and cellulose nanocrystals: Manufacture and characterization, Biomacromol. 11: 674-681.   DOI   ScienceOn
7 Ranby, B. G. 1952. The cellulose micelles, Tappi 35: 53-58.
8 Revol, J.-F., H. Bradford, J. Giasson, R. H. Marchessault, and D. G. Gray. 1992. Helicoidal selfordering of cellulose microfibrils in aqueous suspension, Int. J. Biological Macromol. 14: 170-172.   DOI   ScienceOn
9 Segal, L., J. J. Creely, and A. E. Martin. 1959. Conrad C. M., An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Res. J. 29: 786-794.   DOI
10 Sirkka, M., L. Tiina, K. Seppo, H. Bo, and S. Jorma. 2000. $^{13}C$ CPMAS NMR investigations of cellulose polymorphs in different pulps. Cellulose 7: 147-159.   DOI   ScienceOn
11 Thygesen, A., J. Oddershede, and H. Lilholt. 2005. On the determination of crystallinity and cellulose content in plant fibers, Cellulose 12: 563-567.   DOI   ScienceOn
12 Baumgarten, P. K. 1971. Electrostatic spinning of acrylic microfibers. J. Colloid. Interf. Sci. 36: 71∼79.   DOI   ScienceOn
13 Doshi, J. and D. H. Reneker. 1995. Electrospinning process and applications of electrospun fibers, J. Electrostatics 35: 151-160.   DOI   ScienceOn
14 Charernsriwilaiwat, N., P. Opanasopit, T. Rojanarata, T. Ngawhirunpat, and P. Supaphol. 2010. Preparation and characterization of chitosan-hydroxybensotriazole/ polyvinyl alcohol blend nanofibers by the electrospinning technique. Carbohyd. Polym. 81: 675-680.   DOI   ScienceOn
15 Cho, M.-J. and B.-D. Park. 2011. Tensile and thermal properties of nanocellulose-reinforced poly (vinyl alcohol) nanocomposites. J. Indus. Eng. Chem. 17(1): 36-40.   DOI   ScienceOn
16 Chronakis, I. S. 2005. Novelnanocomposites and nanoceramics based on polymer nanofibers using electrospinning process-A review. J. Mater. Process. Technol. 167: 283-293.   DOI   ScienceOn
17 Eichhorn, S. J., A. Dufresne, M. Aranguren, N. E. Marcovich, J. R. Capadona, S. J. Rowan, C. Weder, W. Thielemans, M. Roman, S. Renneckar, W. Gindl, S. Veigel, J. Keckes, H. Yano, K. Abe, M. Nogi, A. N. Nakagaito, A. Mangalam, J. Simonsen, A. S. Benight, A. Bismarck, L. A. Berglund, and T. Peijs. 2010. Review: current international research into cellulose nanofibres and nanocomposites, J. Mater. Sci. 45: 1-33.   DOI   ScienceOn
18 Favier, V., G. R. Canova, J. Y. Cavaille, H. Chanzy, A. Dufresne, and C. Gauthier. 1995. Nanocomposite materials from latex and cellulose whiskers. Polym. Adv. Tech. 6: 351-355.   DOI   ScienceOn
19 Hamad, W. 2002. Cellulosic materials: Fibers, Networks and Composite, Kluwer Academic Publisher, Massachusetts.
20 Huang, Z.-M., Y.-Z. Zhang, M. Kotaki, and S. Ramakrishna. 2003. A review of polymer nanofibers by electrospinning and their applications in nanocomposites, Compos. Sci. Tech. 63: 2223-2253   DOI   ScienceOn