• Title/Summary/Keyword: wood board

Search Result 331, Processing Time 0.034 seconds

Physico-Mechanical Properties and Formaldehyde Abatement of Particleboard Mixed with Gingko Tree Leaves (은행나무 잎을 혼합하여 제조한 파티클보드의 물리.기계적 성질과 포름알데히드 저감효과)

  • Park, Sang-Bum
    • Journal of Korea Foresty Energy
    • /
    • v.25 no.2
    • /
    • pp.28-33
    • /
    • 2006
  • This study was conducted to find potentialities of the leaves of gingko tree (Gingko biloba L.) which has been planted as a roadside tree in Korea because of its resistance on air pollution, insect, fungi, etc. Various amounts of the leaves were mixed with wasted wood particles to manufacture particleboard. Their influences on physical and mechanical properties and the formaldehyde emission of PB were investigated. Physical and mechanical properties, such as density, modulus of rupture (MOR), and internal bond (IB) strength, of manufactured particleboard were not much different from those of control board. Formaldehyde emission values were decreased with increasing amount of leaves in PB prepared. Especially, particleboard made with 3 percent of leaves was decreased to $1.66mg/{\ell}$ in formaldehyde emission, which is about 40% lower emission than that of control. From these results, the leaves of gingko tree may be considered as a formaldehyde emission lowering additive in a functional PB manufacturing process.

  • PDF

Studies on Manufacture of Thin Composite Panel for Substitute Use of Plywood (I) - On the Optimum Manufacturing Condition of Composites - (합판대용(合板代用) 박판상(薄板狀) 복합재(複合材) 제조(製造)에 관(關)한 연구(硏究) (I) - 복합재(複合材) 제조(製造)의 최적조건(最適條件)에 관(關)하여 -)

  • Lee, Phil-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.55-69
    • /
    • 1995
  • The primary objective of this research was to investigate optimum manufacturing condition of thin composite panels composed of sawdust, polyethylene film and polypropylene net. At the study the experiment was designed to make thin board in which sawdust offers effectiveness as core composing material, polyethylene as adhesive with added urea resin, and polypropylene as stiffness and flexibility in the composition panel. 100 types of thin composite panels were manufactured according to press-lam and mat-forming process of various hot pressing conditions(pressure, temperature and time). They were tested and compared with control boards on bending properties(MOR, MOE, SPL, WML), internal bond strength, thickness swelling, linear expansion and water absorption. At the same time the visual inspections of each types of panels were accomplished. The physical and mechanical properties of composite types passed by visual inspection were analyzed by Tukey's studentized range test. From the statistical analysis, the optimum manufacturing condition of thin composite panels were selected. Compared with two manufacturing processes, mat-forming process performed better than press-lam process in all tested properties. The optimum manufacturing conditions resulted from the experiment and statistical analysis were able to determine as following: the press temperature was shown the most good result at 130$^{\circ}C$ in mat forming process and 140$^{\circ}C$ press lam process, the press time 4 min in both processes, but the press pressure was 25-10kg/$cm^2$ in mat forming and 15k/$cm^2$ press lam process.

  • PDF

Effects of the Wire Net Composition on Flexural Properties of Sawdustboard (철강구성(鐵鋼構成)이 톱밥보오드의 휨성질(性質)에 미치는 영향(影響))

  • Lee, Phil-Woo;Suh, Jin-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.67-72
    • /
    • 1985
  • To improve the bending strength of sawdustboard, verious resin contents of 10, 13, 16, and 19% were applied to the thin shell (face layer) composed with wire net or not. The shell effect of sawdust and wire net composition formed with core sawdustboard were evaluated. Forcusing on the effects of wire net composition and noncomposition including a comparison with chipboard and veneer complyboard, bending properties (Modulus of rupture (MOR), Modulus of elasticity (MOE), Stress at proportional limit ($S_{pl}$). Work to maximum load ($W_{ml}$))were analyzed and discussed. 1. In modulus of rutpute, veneer comply was the highest (621.5 kg/$cm^2$), and next decreasing order was wire net composition (159.1 kg/$cm^2$), chipboard (81.75 kg/$cm^2$), and wire net noncomposition (76.21 kg/$cm^2$) as in modulus of elasticity, work to maximum load, except for stress at proportional limit. 2. The highly significant effects were shown in both wire net composition and noncomposition, at the same time wire net composition exceeded two times of noncomposition throughout resin contents in bending properties. Chipboard was similar to the mean or 16% resin content in noncomposirion. 3. Every board in wire net composition above 10% resin content was beyond 100 kg/$cm^2$ in MOR, minimum allowable strength for structural use according to KS F 3104. In conclusion, the feasibility for improving the bending strength of weak sawdustboard by wire net composed shell was offered.

  • PDF

Physical and Mechanical Properties of Panels Fabricated with Particle and Fiber by Composition Types (구성형태(構成形態)에 따른 파티클과 파이버로 제조(製造)한 패널의 물리적 및 기계적 성질)

  • Yoon, Hyoung-Un;Lee, Phil-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.9-22
    • /
    • 1992
  • The aim of this research was to investigate physical and mechanical properties of various composition panels, each fabricated with a ratio of fiber to particle of 2 to 10. Type A consisted of fiber-faces and particle-core in layered-mat system. Type B consisted of fiberboard-faces on particleboard-core. Type C consisted of fibers and particles in mixed-mat system. The results obtained from tests of bending strength, internal bond, screw holding strength and stability were as follows: 1. The bending strength and internal bonding of both the Type A panel and the Type B panel were higher than those of the Type C panel and three-layered particle board. 2. The mechanical properties of the Type C panel showed the lowest values of all composition methods. It seems that the different compression ratios of the particle and fiber interrupted the densification of the fibers when hot pressed. 3. The dimensional stability of layered-mat system panels consising of fiber-faces and particle-core was better the than control particleboard. 4. In composition methods of particle and fiber, layered-composition method was more resonable than mixed-composition. The Type B panel had the highest mechanical properties of all the composition types. 5. The Type A panel was considered the ideal composition method because of its resistance to delamination between the particle-layer and the fiber-layer and because of its lower adhesive content and more effective manufa cturing process.

  • PDF

Evaluation on the Appearance and Gluing Characteristics of Pine Laminated Boards according to Overlaying Materials (소나무 집성판의 표면화장 재료별 외관품질 및 접착성 평가)

  • So, Won-Tek
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.1
    • /
    • pp.27-35
    • /
    • 2007
  • This experiment was carried out to investigate the appearance and surface gluing characteristics of laminated boards overlaied with teak sliced veneer, printing paper, wall paper, cotton cloth, and wool cloth, The overlaying sheets were glued on the laminated boards with polyvinyl acetate emulsion adhesives and the species for laminated boards was red pine. The obtained results are summarized as follows; in case of the teak sliced veneer overlaied boards, the appearance quality was very good and showed the first grade of KS standard. but the delamination rate was 44.0% and 895% for cold water or warm water dipping treatments, respectively, so the wet gluing properties were very bed. In the case of the paper or cloth overlaied boards, the appearance quality was same good and showed the first grade of KS standard, but their delamination rate was 10~20% and 39.3~49.0 for cold water or warm water dipping treatments, respectively, so the wet gluing properties were bed, relatively better than sliced veneer overlaied boards. The present work showed that appearance of laminated boards overlaid with several sheets appeared quite positive in terms of secondary gluing qualities of laminated boards, suggesting that sliced veneer, paper, and cloth would be appropriate for the overlaying materials of laminated boards.

Analysis of Wooden Materials and Fabrics from the Tomb of Yi Jing (이징(1580년~1642년) 묘 출토 목질류 및 직물류 분석)

  • Lee, Hyosun;Park, Woonji
    • Conservation Science in Museum
    • /
    • v.18
    • /
    • pp.19-34
    • /
    • 2017
  • Analysis of the species of wood in the wooden materials and the chemical composition of the fabric of the clothing excavated from the tomb of Yi Jing (1580-1642) has determined that the wooden materials, including the coffin (內棺, naegwan), burial chamber(外棺, oegwan), chilseongpan(七星板, bottom-lining board), and fan-shaped slats were made of pine(Pinus densiflora). The analysis of the fabrics suggested that the cloth attached to the fan-shaped slats, the funeral banner with inscriptions, and the five pouches for the corpse (五囊, onang) were all made of silk. The jacket was made of plain-weave cotton, while the inner and outer cloth of the socks were made of cotton and hemp, respectively. Among the silk items, the pouches for the left and right feet (constituting the five pouches for the corpse) were made from a satin-weave figured silk, while the other silk items were made of ju(紬), or plain-weave silk fabric. Infrared analysis revealed that the fan-shaped slats were decorated with cloud patterns across the entire surface, while the funeral banner and the five pouches for the corpse bore ink inscriptions.

Physico-Mechanical Properties of Cement-Bonded Boards Produced from Mixture of Corn Cob Particles and Gmelina arborea Sawdust

  • Adelusi, Emmanuel Adekanye;Olaoye, Kayode Oladayo;Adelusi, Felicia Temitope;Adedokun, Samuel Ayotunde
    • Journal of Forest and Environmental Science
    • /
    • v.37 no.1
    • /
    • pp.79-89
    • /
    • 2021
  • Cement bonded boards of 10 mm in thickness were produced from the mixture of Gmelina arborea sawdust and corn cob particles. The strength and dimensional stability of cement bonded composites produced from these two mixtures were examined. A total of thirty experimental boards were produced at density level of 1,000 kg/㎥ with cement to fibre ratio of 2.5:1 and 3:1 and five (5) blending proportions of G. arborea sawdust to corn cob particles of 100:0; 75:25; 50:50; 25:75 and 100:0. The effect of the cement to fibre ratio and blending proportion on the Water Absorption (WA), Thickness Swelling (TS), Modulus of Rupture (MOR), and Modulus of Elasticity (MOE) were determined. The result indicates that as the mixing ratio of cement to fibre and blending proportion of maize cob (75%) to G. arborea (25%) increased, the thickness swelling, water absorption decreased, whereas the MOR and MOE increased. It also shows that most dimensionally stable and flexural strength boards were produced at the highest level of mixing ratios (3:1) and blending proportion of G. arborea to corn cob 25:75. However, the analysis of variance shows that TS and WA were significantly different, whereas, MOE and MOR were not significantly affected by mixing ratios and blending proportions. Finding of this study has shown that maize cob particles are suitable for cement bonded board production.

Properties of Woodceramics Made from Thinned Logs(I) - Effect of Resin Impregnation Rate and Burning Temperature - (간벌재로 제조된 우드세라믹의 성질(I) - 수지 함침율 및 소성온도의 영향 -)

  • Oh, Seung-Won;Piao, Jin-Ji
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.73-79
    • /
    • 2004
  • Research investigated the variation of density, weight loss and dimensional decreasing rate, heat conduction rate by the resin impregnation rate and burning temperature of woodceramics, which were formed by impregnation rate of 40~80% and burning temperature of 600~1500℃ with sawdust board impregnated with phenolic resin made from thinned logs of pinus densiflora, Larix kaemferi and pinus koraiensis. As the resin impregnation rate and the burning temperature increased, the density increased, however, as the burning temperature increased to at 1200℃ or more, the density decreased. The more the resin impregnation rate increased, the more the decreasing rate of weight and size decreased; the more the burning temperature increased, the more the decreasing rate of weight and size increased. When the resin impregnation rate was high, the heat conduction (mm/sec) was superior.

A study on Furniture Design as Object by Fusion Approaching with Wood and Ceramics (목재와 도자 소재의 융합적 접근에 의한 오브제 기능의 가구 연구)

  • Chung, Yong Hyun;Choi, Kyung Ran
    • Korea Science and Art Forum
    • /
    • v.19
    • /
    • pp.601-612
    • /
    • 2015
  • Postmodernism has blurred the line between design and art. We would like to suggest a design case that took diversity in the modern era that harmonizes functionality and shape of the top board of a furniture and trend of the role of furniture and objet into consideration. This study aims to project a new role into space via convergence of objet that has aesthetic function and furniture design that plays practical role in space. Thus, furniture design attempts to combine ceramic and carpentry and demonstrate the value and potential the combination possesses. By creating a distinct design from previous furniture that had visual limitations with ceramic bridge that adopted existing piling method in ceramic design, we expect a fresh blend of furniture and space that encompasses a different sensation from color and texture of soil and glaze, unable to attain from simple wood.

Paper Recycling of South Korea and its Effects on Greenhouse Gas Emission Reduction and Forest Conservation

  • Cha, Junhee;YOUN, Yeo-Chang
    • Journal of Korean Society of Forest Science
    • /
    • v.97 no.5
    • /
    • pp.530-539
    • /
    • 2008
  • The study evaluates the greenhouse gas (GHG) reduction potential of paper recycling by paper industry in South Korea and determines the positive impact on global warming by conserving the world's forests through decreasing pulp wood use. South Korea is one of the leading countries in the world thai recycle papers with a collection rate of 71.8 percent and a recycling rate of 74.4 percent in 2005. Greenhouse gas emission reduction potential in terms of carbon dioxide ($CO_2$) equivalent from paper recycling was assessed scientifically by the use of Life Cycle Assessment (LCA). Three types of papers including newsprint, container-board, and white-board were used for assessment in this study. Results of this study indicate that $CO_2$ emission reduction potential of recycling paper varies according to its types and recycling rates. Greenhouse gas emission reduction factor of 0.74869 $tCO_2$ per ton of recycled paper was derived from this study. In applying this factor. it was found out that the South Korean paper industry reduced GHG emission of around 6,364,550 $tCO_2$ by recycling paper in 2005. With this. the country's paper industry could claim that by recycling in thai particular year. approximately $23.8million\;m^3$ of woods were not harvested and thus 212,500 ha of world's forests were estimated to be saved in that particular year. Overall. it could be concluded that the Korean paper industry was able to reduce $CO_2$ emission and was able to conserve world's forests by its high rates of paper recycling.