• Title/Summary/Keyword: wireless sensors

Search Result 1,141, Processing Time 0.032 seconds

Selection of Monitoring Nodes to Maximize Sensing Area in Behavior-based Attack Detection

  • Chong, Kyun-Rak
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.1
    • /
    • pp.73-78
    • /
    • 2016
  • In wireless sensor networks, sensors have capabilities of sensing and wireless communication, computing power and collect data such as sound, movement, vibration. Sensors need to communicate wirelessly to send their sensing data to other sensors or the base station and so they are vulnerable to many attacks like garbage packet injection that cannot be prevented by using traditional cryptographic mechanisms. To defend against such attacks, a behavior-based attack detection is used in which some specialized monitoring nodes overhear the communications of their neighbors(normal nodes) to detect illegitimate behaviors. It is desirable that the total sensing area of normal nodes covered by monitoring nodes is as large as possible. The previous researches have focused on selecting the monitoring nodes so as to maximize the number of normal nodes(node coverage), which does not guarantee that the area sensed by the selected normal nodes is maximized. In this study, we have developed an algorithm for selecting the monitoring nodes needed to cover the maximum sensing area. We also have compared experimentally the covered sensing areas computed by our algorithm and the node coverage algorithm.

A Study on Energy Efficient Self-Organized Clustering for Wireless Sensor Networks (무선 센서 네트워크의 자기 조직화된 클러스터의 에너지 최적화 구성에 관한 연구)

  • Lee, Kyu-Hong;Lee, Hee-Sang
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.37 no.3
    • /
    • pp.180-190
    • /
    • 2011
  • Efficient energy consumption is a critical factor for deployment and operation of wireless sensor networks (WSNs). To achieve energy efficiency there have been several hierarchical routing protocols that organize sensors into clusters where one sensor is a cluster-head to forward messages received from its cluster-member sensors to the base station of the WSN. In this paper, we propose a self-organized clustering method for cluster-head selection and cluster based routing for a WSN. To select cluster-heads and organize clustermembers for each cluster, every sensor uses only local information and simple decision mechanisms which are aimed at configuring a self-organized system. By these self-organized interactions among sensors and selforganized selection of cluster-heads, the suggested method can form clusters for a WSN and decide routing paths energy efficiently. We compare our clustering method with a clustering method that is a well known routing protocol for the WSNs. In our computational experiments, we show that the energy consumptions and the lifetimes of our method are better than those of the compared method. The experiments also shows that the suggested method demonstrate properly some self-organized properties such as robustness and adaptability against uncertainty for WSN's.

Statistical Location Estimation in Container-Grown Seedlings Based on Wireless Sensor Networks

  • Lee, Sang-Hyun;Moon, Kyung-Il
    • International Journal of Advanced Culture Technology
    • /
    • v.2 no.2
    • /
    • pp.15-18
    • /
    • 2014
  • This paper presents a sensor location decision making method respect to Container-Grown Seedlings in view of precision agriculture (PA) when sensors involved in tree container measure received signal strength (RSS) or time-of-arrival (TOA) between themselves and neighboring sensors. A small fraction of sensors in the container-grown seedlings system have a known location, whereas the remaining locations must be estimated. We derive Rao-Cramer bounds and maximum-likelihood estimators under Gaussian and log-normal models for the TOA and RSS measurements, respectively.

Application of Wireless Sensor for Diagnostics of Electric Equipments (전력 설비 진단을 위한 무선 센서의 응용)

  • Yun, Ju-Ho;Choi, Yong-Sung;Hwang, Jong-Sun;Lee, Kyung-Sup
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.2112-2113
    • /
    • 2008
  • The concept is based on distributed wireless sensors that are attached to the incoming and outgoing power lines of secondary substations. A sensor measures only phase current characteristics of the wire it is attached to, is not synchronized to other sensors and does not need configuration of triggering levels. The main novelty of the concept is in detecting and locating faults by combining power distribution network characteristics on system level with low power sampling methods for individual sensors. This concept enables the sensor design to be simple, energy efficient and thus applicable in new installations and for retrofit purposes in both overhead and underground electrical distribution systems.

  • PDF

Zero-Phase Angle Frequency Tracking Control of Wireless Power Transfer System for Electric Vehicles using Characteristics of LCCL-S Topology (LCCL-S 토폴로지 특성을 이용한 전기자동차용 무선충전시스템의 ZPA 주파수 추종 제어)

  • Byun, Jongeun;Lee, Byoung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.5
    • /
    • pp.404-411
    • /
    • 2020
  • Inductive power transfer (IPT) systems for electric vehicles generally require zero phase angle (ZPA) frequency tracking control to achieve high efficiency. Current sensors are used for ZPA frequency tracking control. However, the use of current sensors causes several problems, such as switching noise, degrading control performance, and control complexity. To solve these problems, this study proposes ZPA frequency tracking control without current sensors. Such control enables ZPA frequency tracking without real-time control and achieves stable zero voltage switching operation closed to ZPA frequency within all coupling coefficient and load ranges. The validity of the proposed control algorithm is verified on LCCL-S topology with a 3.3 kW rating IPT experimental test bed. Simulation verification is also performed.

Simple Bluetooth Wireless Multi-gas Measurement System (간단한 블루투스 무선다중가스센서 계측시스템)

  • Kim, Chul min;Kim, Doyoon;Kim, Yeonsu;Kim, Gyu-tae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.2
    • /
    • pp.51-54
    • /
    • 2020
  • To develop gas-distinguishing sensor system, it is highly required to integrate multiple sensors for effective detection of a single targeted gas or mixture of gases. In addition, it is important to collect the reliable data from individual sensors into one integrated measuring device. Collecting the data of toxic gases on the spot should be done without inhalation. We suggest simple wirelessly running system for data collection that guarantees both reliability of data sources and safety. Here, we made a multi-gas measuring instrument(device) combined with Bluetooth module which provides a safe and precise big data accumulation system.

A basic study of wireless sensor monitoring system configuration for active machinery (능동기기 무선센터 모니터링 시스템 구축에 관한 기초연구)

  • Park, Chang-Dae;Lim, Byung-Ju;Lee, Hoo-Rock;Choi, Bong-Woo;Hwang, Seung-Jae;Chung, Kyung-Yul
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2012.06a
    • /
    • pp.119-120
    • /
    • 2012
  • In the various industry plant, it need a condition monitoring system for an active machine that used an detachable wireless sensors. In this paper, IEEE802.15.4 standard based detachable wireless sensor monitoring system configure results will be introduced.

  • PDF

Cooperative Synchronization and Channel Estimation in Wireless Sensor Networks

  • Oh Mi-Kyung;Ma Xiaoli;Giannakis Georgios B;Park Dong-Jo
    • Journal of Communications and Networks
    • /
    • v.7 no.3
    • /
    • pp.284-293
    • /
    • 2005
  • A critical issue in applications involving networks of wireless sensors is their ability to synchronize, and mitigate the fading propagation channel effects. Especially when distributed 'slave' sensors (nodes) reach-back to communicate with the 'master' sensor (gateway), low power cooperative schemes are well motivated. Viewing each node as an antenna element in a multi-input multi-output (MIMO) multi-antenna system, we design pilot patterns to estimate the multiple carrier frequency offsets (CFO), and the multiple channels corresponding to each node-gateway link. Our novel pilot scheme consists of non-zero pilot symbols along with zeros, which separate nodes in a time division multiple access (TDMA) fashion, and lead to low complexity schemes because CFO and channel estimators per node are decoupled. The resulting training algorithm is not only suitable for wireless sensor networks, but also for synchronization and channel estimation of single- and multi-carrier MIMO systems. We investigate the performance of our estimators analytically, and with simulations.

An Optimization Algorithm for Minimum Connected Dominating Set Problem in Wireless Sensor Network

  • Ahn, Nam-Su;Park, Sung-Soo
    • Industrial Engineering and Management Systems
    • /
    • v.10 no.3
    • /
    • pp.221-231
    • /
    • 2011
  • One of the critical issues in wireless sensor network is the design of a proper routing protocol. One possible approach is utilizing a virtual infrastructure, which is a subset of sensors to connect all the sensors in the network. Among the many virtual infrastructures, the connected dominating set is widely used. Since a small connected dominating set can help to decrease the protocol overhead and energy consumption, it is preferable to find a small sized connected dominating set. Although many algorithms have been suggested to construct a minimum connected dominating set, there have been few exact approaches. In this paper, we suggest an improved optimal algorithm for the minimum connected dominating set problem, and extensive computational results showed that our algorithm outperformed the previous exact algorithms. Also, we suggest a new heuristic algorithm to find the connected dominating set and computational results show that our algorithm is capable of finding good quality solutions quite fast.

Wireless Sensor Network Monitoring System (무선 센서 네트워크 모니터링 시스템)

  • Jo, Hyoung-Kook;Jung, Kyung-Kwon;Kim, Joo-Woong;Eom, Ki-Hwan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.946-949
    • /
    • 2007
  • A wireless sensor network (WSN) is a wireless network consisting of spatially distributed autonomous devices using sensors to cooperatively monitor physical or environmental conditions, such as temperature, sound, vibration, pressure, motion at different locations. Environmental monitoring represent a class of sensor network applications with enormous potential benefits for scientific communities and society. In this paper we design and implement a novel platform for sensor networks to be used for monitoring of temperature, humidity, and light sensors.

  • PDF