
IEMS Vol. 10, No. 3, pp. 221-231, September 2011.

An Optimization Algorithm for Minimum
Connected Dominating Set Problem in Wireless

Sensor Network

Namsu Ahn
Defense Agency for Technology and Quality

275-18, Boksu-dong, Seo-gu, Daejeon, 302-840
Tel: +82-10-6590-0423, E-mail: namsu.ahn@gmail.com

Sungsoo Park†

Department of Industrial and Systems Engineering
KAIST, 373-1, Gusong-dong, Yusong-gu, Daejeon, 305-701,

Tel: +82-42-350-3121, Fax: +82-42-869-3110, E-mail: sspark@kaist.ac.kr

Received, March 12, 2011; Revised, May 18, 2011; Accepted, May 24, 2011

Abstract. One of the critical issues in wireless sensor network is the design of a proper routing protocol. One
possible approach is utilizing a virtual infrastructure, which is a subset of sensors to connect all the sensors in the
network. Among the many virtual infrastructures, the connected dominating set is widely used. Since a small
connected dominating set can help to decrease the protocol overhead and energy consumption, it is preferable to
find a small sized connected dominating set. Although many algorithms have been suggested to construct a
minimum connected dominating set, there have been few exact approaches. In this paper, we suggest an
improved optimal algorithm for the minimum connected dominating set problem, and extensive computational
results showed that our algorithm outperformed the previous exact algorithms. Also, we suggest a new heuristic
algorithm to find the connected dominating set and computational results show that our algorithm is capable of
finding good quality solutions quite fast.

Keywords: Connected Dominating Set, Cutting Plane, Integer Programming, Wireless Sensor Networks

1. INTRODUCTION

Due to the recent rapid advances in digital techno-
logies and the mass production, developments of multi-
functional, low-cost and low-power sensors become
possible. Generally, sensor is composed of four major
units: power unit, sensing unit, processing unit and trans-
ceiver unit, and each unit performs a unique function.
The power unit provides power to all the other units, and
the sensing unit takes charge of the monitoring task and
data converting task. Thus, if a certain phenomenon hap-
pens, the sensing unit detects the phenomenon changes,
such as temperature, light, sound and humidity, and then
converts the sensed analog data to digital data. The pro-
cessing unit can manipulate the collected data and store
the collected data in the storage device for transmitting.
The transceiver unit can transmit/receive information
over a wireless network.

Typically, a large number of sensors collaborate
using wireless communication, and the sensors gather,
process and transmit information over a wireless network
to a remote running application that makes decisions
based on this information. Since the deployed sensors
are clustered and communicate in wireless channels, we
call it wireless sensor network (WSN). Nowadays, WSN
has many applications, such as habitat monitoring, forest-
fire detection, patient status monitoring, home appliance,
inventory tracking and battlefield monitoring.

WSN is featured by no fixed infrastructure, multi-
hop communication and limited resources (battery capa-
city and bandwidth). These characteristics pose new
difficulties in designing a routing protocol. Some exis-
ting routing protocols for ad hoc networks (Ng and Lu,
1999; Pei et al., 2000) are based on flooding mechanism
(i.e., upon receiving a packet, transmit the packet to all
of its neighbors). Therefore if we use these protocols, it

† : Corresponding Author

222 Namsu Ahn·Sungsoo Park

not only devastates the resources of the sensors, but
gives negative effect on the throughput of the whole net-
work. Furthermore, it probably causes broadcasting storm
problem as indicated in Ni et al. (2002), which results in
excessive data redundancy, contention and collision.

In Sinha et al. (2001), a new routing protocol based
on an overlaying virtual infrastructure, so called virtual
backbone, is proposed and the authors showed that,
using the backbone can reduce the routing overhead
dramatically. Simply, a virtual backbone is defined as a
subset of sensors, which can connect all the sensors in
the network. This concept is frequently used to simplify
the network and improves the efficiency of the routing.

In many existing virtual backbone schemes which
can be found in Alzoubi et al. (2002), Chen et al. (2002),
Dai and Wu (2004), Stojmenovic et al. (2002) and Wu
and Dai 2004, a connected dominating set (CDS) is
suggested to use as a backbone. To simplify our discu-
ssion, we use a connected graph G = (V, E) to represent
the network, where V and E represent the set of vertices
and the set of edges, respectively. Each vertex v ∈ V
indicates a sensor, and there is an edge e(= uv) ∈ E
which denotes that sensor u is within sensor v's com-
munication range and vice versa. A set of sensors is
called a dominating set if each of the sensors in the
network is either in this set or has a neighbor (sensor u
is neighbor of sensor v if there exists an edge between
the two vertices) in the set. Typically, the sensors in the
dominating set are called dominators, and the other
sensors are called dominatees. A dominating set is cal-
led a CDS if the subgraph induced by the dominating set
is connected, and the connectivity among the domi-
nators is required for proper routing of signals. There-
fore if any dominatee want to send a message to domi-
nator(or dominatee), it first send a message to connected
neighbor dominator. If CDS is used as a backbone, we
can obtain the following good characteristics of the
network.

• Routing overhead can be reduced as shown in Wu and

Li (1999) because only the sensors in CDS need to
maintain the routing information. Thus, if a domina-
tee wants to send a packet to another dominatee, it
sends the packet to its dominator. Then the dominator
will deliver the packet to the destination dominatee.

• Energy efficient area coverage is possible as indicated
in Carle and Simplot (2004) and Chen et al. (2002).
Since CDS is a good approximation of an area, do-
minators in CDS can take over the dominatees’ sens-
ing task. Thus, if the dominators are actively perfor-
ming the sensing task, all of its dominatees probably
enter into a low-battery sleep state to save energy for
future use.

Usefulness of the CDS in WSN has been demon-

strated in many communication protocols such as media
access coordination, unicast, multicast/broadcast, locat-
ion-based routing, energy conservation, resource disco-

very and topology control (More comprehensive review
can be found in Blum et al. (2004)).

Since the number of sensors forming the virtual
backbone needs to be as small as possible to decrease
the protocol overhead and energy consumption, it is
desirable to form a minimum sized CDS. Finding a
minimum sized CDS problem is referred to as the mini-
mum connected dominating set (MCDS) problem. For
example, vertex set {a, b, c} in Figure 1 forms a CDS,
thus the dominators are {a, b, c} and the dominatees are
{d, e, f}.

Figure 1. Example of the CDS.

Finding an MCDS is an NP-Hard problem Garey

and Johnson (1979), and many researches have been
performed on the MCDS problem and a comprehensive
review on the algorithms can be found in Blum et al.
(2004). In this paper, we review the centralized CDS
construction algorithms only (Although CDS can be
constructed in a distributed manner (Chen et al., 2009;
Wang et al., 2009), it is beyond the scope of this paper).

We review the performance guaranteed approxima-
tion algorithms first. In Guha and Khuller (1998), two
algorithms are suggested. One forms a CDS of size at
most 2(1 ())+ Δ ⋅H MCDS and the other one constructs a
CDS of size (3 ())+ Δ ⋅ln MCDS , where H, MCDS and
Δ represent the harmonic function, size of the MCDS
and the maximum degree of the given graph, respecti-
vely. The authors in Li et al. (2005), Min et al. (2006)
and Ruan et al. (2004) reported (4.8 5)+ ⋅ln MCDS , 6.8

MCDS⋅ and (3 ())+ Δ ⋅ln MCDS approximation algori-
thms, respectively.

There exist many heuristic algorithms for the MCDS
problem. Relatively latest ones can be found in Chen et
al. (2010) and Morgan and Grout (2008). However, these
algorithms cannot guarantee the quality of the obtained
solutions because no information on the lower bound
can be obtained.

Although solving the MCDS problem exactly is an
important research goal, there have been few exact ap-
proaches. One simple scheme is enumerating all subset
of the vertices, and the algorithm shown in Fomin et al.
(2008) breaks the 2 V

 barrier by suggesting (1.9407) VO
algorithm. However, no implementation and performance
test of the algorithm can be found.

Other two optimal approaches used mathematical
formulations to obtain MCDS (Morgan and Grout, 2008;

 An Optimization Algorithm for Minimum Connected Dominating Set Problem in Wireless Sensor Network 223

Yuan, 2005). However, the performances of the algo-
rithms reported by the authors were not impressive. In
this paper, we propose an improved optimal algorithm
using the mathematical formulation in Yuan (2005) and
compare the performances with the previous two app-
roaches. The computational results showed that, our
algorithm outperforms the previous optimal approaches
in terms of the running time to obtain an optimal
solution. Also, we propose a new heuristic which use the
formulation and the idea of our improved optimal algo-
rithm.

This paper is organized in the following way. In
Section 2, we review notation and definition. In Section
3, the existing mathematical formulations and algori-
thms for the MCDS problem will be discussed, and an
improved optimal approach will be introduced in the
same section. Section 4.1 shows the performance of the
improved optimal approach suggested in this research.
Section 4.2 includes description of the heuristic which is
suggested in this research for computing the connected
dominating set efficiently, and shows the performance
of the heuristic. Finally, in Section 5, we conclude this
paper.

2. PRELIMINARIES

This section provides some background informa-
tion to understand the rest part of the paper. As noted
before, WSN can be represented by a simple graph G =
(V, E) and the following definition and notation from
graph theory will be used throughout the paper.

• Open neighbor set, { }() () ,= ∈N u v uv E is the set of ver-

tices adjacent to vertex u.
• Closed neighbor set, [] { }() ,= ∪N u N u u is the set of ver-

tices adjacent to vertex u and u itself.
• Independent set is a subset of V such that no two

vertices are adjacent in G. For example, {d}, {d, e}
and {d, e, f} are independent sets in Figure 1.

• Maximal independent set is an independent set such
that adding any vertex not in the set breaks the pro-
perty of the independent set. For example, in Figure 1,
the independent set {d, e, f} is a maximal independent
set since addition of any other vertices (a or b or c)
makes some vertices in the set are connected.

• Dominating set is a subset of V such that each vertex
is either in the set or has a neighbor in the set. Note
that every maximal independent set is a dominating
set, but the converse is not true.

• Connected dominatig set is a dominating set whose in-
duced subgraph is connected. For example, {a, b, c}
is a CDS in Figure 1.

• Steiner tree is a tree which, for a given subset T of V,
connects the vertices of T possibly using the vertices
in V\T. For example, in Figure 1, if T is given as {d, e,
f}, a Steiner tree can be constructed by adding the
remaining vertices {a, b, c} and the edges ab, ac, ad,

be and cf.
• Vertex cut is a subset of V whose removal disconnects

the graph.

If we use maximal independent set and Steiner tree,

the following simple procedure can construct a CDS.
We first form a maximal independent set to identify a
dominating set, and let the generated dominating set
from the first step be the vertex set T in Steiner tree.
Then CDS can be constructed by finding a Steiner tree.
Many heuristic algorithms and approximation algori-
thms have been developed using this idea, and the latest
one can be found in Min et al. (2006).

3. MATHEMATICAL FORMULATIONS AND
OPTIMAL ALGORITHMS

To the best of our knowledge, two different mathe-
matical formulations exist for the MCDS problem, first
one is shown in Morgan and Grout (2008) and the se-
cond one is suggested in Yuan (2005). Two formula-
tions used different modeling techniques. The first one
used a 2 2V E+ number of variables with 3 2V E+
number of constraints, approximately. The second one
used a V number of variables, but it required an expo-
nential number of constraints to represent the connec-
tivity of the induced subgraph. At first sight, the first
formulation seems to be better. However, after perfor-
ming extensive computational experiments, we concluded
that, if an improved optimal algorithm developed in this
paper is used, the second formulation may be used to find
an optimal solution much faster than the first formula-
tion.

Generally, representing the connectivity require-
ment for the graph problems asks for an exponential
number of inequalities. To avoid this, the first formula-
tion used the flow variables in the formulation. The main
idea of the formulation is, when the vertices are selected
to form a CDS, any vertex included in the CDS can send
a flow to each of the other vertices in the CDS (using
only the selected vertices). Each vertex included in the
CDS requires at least one unit of flow, and the root
vertex (vertex 1) contains enough flows to supply the
required flows in each vertex in the CDS. Thus, if the
root vertex is not included in the CDS, it transfers all of
its flows to one of its neighboring vertices which is
selected to be included in the CDS. We first construct a
directed graph G = (V, A) by replacing each edge e(= ij)
∈ E by two arcs ij and ji, and define the decision
variables as the following.

1, ,
0,
⎧

= ⎨
⎩

i

if vertex i is included in the MCDS
x

otherwise

.=ijf amount of flow from vertex i to j
1,
0,
⎧

= ⎨
⎩

i

if flow is permitted from root vertex to vertex
x

otherwise

224 Namsu Ahn·Sungsoo Park

Then the formulation can be given as the following.

∈∑ ii V
Minimize x (1)
Subjectto

{ } 1, 1, ,
∈

+ ≥ =∑i jj ij A
x x i V (2)

{ }{ } 1 11 1
1

∈ ∈
− = −∑ ∑j jj j A j j A

f f V (3)

{ }{ } , 2, ,
∈ ∈

− ≥ =∑ ∑ji ijj ji A j ij A
f f xi i V (4)

{ }1 1(), 1≥ × + ∀ ∈j jf V x x j j A (5)

{ }, 1 2≤ × ∀ ∈ ≥ ≥ij if V x ij A i and j (6)

{ }1 , 1≤ × ∀ ∈j if V y j j A (7)

{ } 11
1

∈
≤ + ×∑ jj j A

y x V (8)

{ }0, 1 , 1, ,∈ =ix i V (9)

{ } { }0, 1 , 1∈ ∀ ∈jy j j A (10)

Constraints (1) minimize the number of vertices

which are selected to be included in the CDS. Constra-
ints (2) guarantee that, if the vertex is not included in the
CDS, it has at least one neighboring vertices which are
selected to be included in the CDS to satisfy the domi-
nance requirement. Constraints (3) assure that the root
vertex in the CDS may produce sufficient flows to
provide at least one unit flow to the other vertices which
are chosen to be included in the CDS. Constraints (4)
state that, if any vertex is chosen to be included in the
CDS, it consumes at least one unit flow. Constraints (5)
and (6) set upper bounds for the flows. Constraints (7)
guarantee that flows from the root vertex to the other
vertex j can be sent only if jy is one. While constraint
(8) forces that, if the root vertex is not included in the
CDS, at most one of its neighbor vertices can be sel-
ected in the CDS to send the flows. Constraints (9) and
(10) state the binary integer requirements on the variables.

The authors in Morgan Grout (2008) reported that,
when ILOG CPLEX (2008) was used as an optimization
software to solve the formulation, they could obtain the
optimal solutions for the graphs of up to 100 vertices in
1000 seconds.

Figure 2. Example of the minimal vertex cut.

Now we review the formulation and the optimal

algorithm shown in Yuan (2005). Before giving a deta-
iled explanation, we introduce notation which will be
used in the formulation. Let C be a minimal vertex cut
(=whose removal disconnects the graph and removing

any vertex in the cut fails to form the vertex cut), and
 be a collection of C. For example, in Figure 2, vertex

cut {a, c, d} is not a minimal vertex cut, but c or d is a
minimal vertex cut.

The author in Yuan (2005) proved that, if at least
one vertex is selected from C, ,∀ ∈C the set of sel-
ected vertices form a CDS. Using this characteristic, the
authors suggested the following formulation for the
MCDS problem (The decision variable ix indicates that
whether the vertex i is included in the CDS or not).

∈∑ ii V

Minimize x (11)
Subjectto

1,
∈

≥ ∀ ∈∑ ji C
x C (12)

{ }0, 1 , .∈ ∀ ∈ix i V (13)

Since the number of constraints (12) can be huge,

representing the formulation in full is impractical. There-
fore the author in Yuan (2005) suggested the following
constraint generation scheme to identify the violated
constraint of (12) only when needed.

Optimal approach in Yuan (2005):
Step 1: Construct the initial formulation using constra-

ints (11) and (13) only.
Step 2: For each vertex v ∈ V, form a subset S of V by

setting S = [v]. For each S, construct a minimal
vertex cut by finding the vertices which has one
or several neighbor vertices in V\S. Then add the
corresponding inequalities of (12) to the formu-
lation.

Step 3: Solve the formulation optimally and let the set
of vertices which are selected as D. If D forms a
CDS, stop the procedure and output the obtained
MCDS. Otherwise, goto Step 4.

Step 4: For each vertex v ∈ V, construct a subset S of
V using the vertices that v can reach via vertices
in D, including v itself. For each S, if we can
construct a minimal vertex cut by finding the
vertices which has one or several neighbor ver-
tices in V\S, store the corresponding inequality
of (12).

Step 5: Perform a pair-wise check for the stored inequ-
alities in Step 4 to identify the inequalities which
are not dominated by the other inequalities (i.e.,
for given two vertex cuts 1C and 2,C if 1C is a
subset of 2,C 2C is dominated by 1C). Only those
inequalities are added to the formulation, and
goto Step 3.

The authors in Yuan (2005) reported that, when the

time limit was set to 1 hour and ILOG CPLEX 7.0 was
used as the optimization software, they could obtain the
optimal solutions for the graph of up to 80 vertices.

Up to this part of the section, we reviewed two
different mathematical formulations and the optimal ap-
proaches to solve the formulations, but the performances

 An Optimization Algorithm for Minimum Connected Dominating Set Problem in Wireless Sensor Network 225

of the algorithms reported by the authors seem to be not
impressive and the approaches have rooms for more
improvements. However, since the primary purposes of
their researches were developing good heuristic algori-
thms, no more efforts in optimal approaches could be
found. Comparisons of the algorithm in Morgan Grout
(2008), original algorithm in Yuan (2005), and our im-
proved algorithm will be given in Section 4.1.

Note that if it is guaranteed that the number of
vertices selected in an MCDS is greater than or equal to
two, the following additional inequalities can be added
to the formulation.

()

1,
∈

≥ ∀ ∈∑ jj N i
x C V (14)

Constraints (14) indicate that any selected vertex has at
least one or more neighboring vertices to establish the
connectivity. Actually, constraints (14) are not required
in a correct formulation of the MCDS problem, but
adding the constraints to the formulation strengthens the
formulation and it reduces the computation time to solve
the problem.

Now we discuss our optimal algorithm for the MCDS
problem based on the formulation from Yuan (2005). To
solve the MCDS problem for a given graph, we used a
different constraint generation scheme and this difference
results in improvements in the computation times to
obtain the optimal solutions.

As noted before, since the number of constraints
(12) can be exponential, the constraints (12) need to be
dealt implicitly rather than explicitly. We first solve the
formulation optimally without constraints (12) and con-
struct the graph using the vertices which are selected.
When the current solution is not a CDS, the optimal
approach in Yuan (2005) identifies one vertex cut which
is violated by the current solution. On the other hand,
when there exist several vertex cuts which are violated
by the current solution, this approach does not guarantee
to identify the smallest sized vertex cut. Since using a
minimum vertex cut among the violated vertex cuts may
tighten the formulation the most, it probably reduces the
computation time to solve the problem.

In this paper, when the constructed subgraph from
the current solution consists of several disconnected
components, we suggest a procedure to find a minimum
vertex cut which separates one component from the
other components. We first explain how to find a vertex
cut using an example, and then, a procedure which iden-
tifies the minimum vertex cut will be discussed.

Assume that, when we solved the formulation with-
out constraints (12) using the example given in Figure 3,
two vertices a and c are selected (for this example,
suppose that we replaced constraints (14) by

[]∈∑ vv N u
x

1, ,≥ ∀ ∈u V otherwise a and c cannot be chosen). How-
ever, since the resulting subgraph is not a CDS, we want
to identify a vertex cut which is violated by the current
solution a and c.

Figure 3. Example of the MCDS problem.

Clearly, since we want to find a vertex cut which

separates the two vertices a and c, vertices b and d form
a vertex cut which is violated by the current solution.
Now we add the corresponding inequality 1+ ≥b dx x to
the formulation. When we solve the enlarged formula-
tion, we can obtain the CDS as {a, b} and the procedure
stops.

However, identifying the vertex cut probably be a
complicating step when the size of the graph is large.
Furthermore, it may be harder to find the minimum ver-
tex cut among the vertex cuts. Therefore, in this paper,
we propose an idea which identifies the vertex cut using
the modified graph of G, then a procedure which can be
used to find the minimum vertex cut will be illustrated
(We used the procedure suggested in Thulasiramanand
Swamy (1992) with some modifications).

To identify a vertex cut for a given graph G = (V,
E), we first replace each edge by two antiparallel arcs,
and then, split a vertex v into two vertices v′ and ,′′v
and create an arc directed from v′ to .′′v Then, replace
an arc that is directed from vertex u to other vertex v by
an arc directed from u′′ to .′v Lastly, assign unit capaci-
ties to the generated arcs which are directed from ′v to

,′′v and allocate very large positive (= M) capacities to
the generated arcs directed from u′′ to .′v The result of
applying the procedure to the example in Figure 3 is
shown in Figure 4.

Figure 4. Transformed graph.

Therefore, when we send flows from a source ver-

tex to a sink vertex as much as possible, only the arcs
which are directed from ′v to v′′ limit the amount of
flows.

Note that in this example, we have two source ver-

226 Namsu Ahn·Sungsoo Park

tices a′ and a′′ (from vertex a) and two sink vertices c′

and c′′ (from vertex c) instead of a single source vertex
and a single sink vertex. Generally, when we want to
find a vertex cut using the modified graph, we need to
solve the multiple sources and multiple sinks maximum
flow problem instead of the ordinary maximum flow
problem. However, this problem can be easily reduced
to the ordinary single source single sink maximum flow
problem. We first add a vertex (= super-source vertex)
and create arcs to the source vertices with capacities M.
Similarly, we add a vertex (= super-sink vertex) and
create arcs from the sink vertices with capacities M.
Then, any flow from the super-source vertex to the
super-sink vertex corresponds to a flow in the multiple
source vertices and multiple sink vertices problem as
shown in Cormen et al. (1989). If we identified the
maximum flow, we also can find the minimum arc cut
such that the value of the flow is equal to one (arcs are
directed from ′v to v′′). Then we can obtain a vertex cut
of the original graph by restoring the vertices corre-
sponding to the cut arcs.

Suppose that the solution from the formulation with-
out constraints (12) is not a CDS, then the selected
vertices form several connected components. Now, for
each component, we want to identify the minimum sized
vertex cut which separates the current component and
the other components, and the corresponding inequa-
lities (12) are added to the formulation. Then, the fol-
lowing procedure can be used to find the minimum sized
violated vertex cut.

Procedure to find the minimum sized violated vertex
cut:
Step 1: For a given undirected graph G = (V, E), cons-

truct a directed graph G = (V, A) by replacing
each edge e(= ij)∈E by two arcs ij and ji.

Step 2: Replace every vertex v∈V by two vertices ′v
and v′′ and create an arc directed from ′v to .′′v

Step 3: Assign unit capacities to the generated arcs in
Step 2.

Step 4: Replace an arc that is directed from vertex u∈V
to the another vertex v∈V by an arc directed
from u′′ to .′v

Step 5: Assign capacities M to the generated arcs in Step 4.
Step 6: Set k as 1.
for all kth component do
Step 6.1: Create a super-source vertex and create arcs

joining the super-source vertex to the vertices
of kth component with capacities M.

Step 6.2: Create a super-sink vertex and create arcs jo-
ining the vertices of the other components to
the super-sink vertex with capacities M.

Step 6.3: Find a maximum flow from the super-source
vertex to the super-sink vertex.

Step 6.4: Identify a minimum arc cut, and obtain a
vertex cut of the original graph by restoring
the vertices corresponding to the arc cut.

Step 6.5: Drop the generated vertices and arcs in Step
6.1 and Step 6.2, and increase k by one.

end for
Step 7: Choose the minimum vertex cut among the ver-

tex cuts identified in Step 6.

4. DESCRIPTION OF THE HEURISTIC

We suggested an optimal approach and tested the
performance of the algorithm in Section 5.1. However,
when the size of the problem becomes large, solving the
MCDS using the formulation failed to provide an opti-
mal solution within an hour. Therefore, we propose a
heuristic which can be used to find the CDS. Major
characteristics of the heuristic are linear programming
relaxation of the mathematical formulation and minimum
vertex cut identification procedure explained in Section
3. The detailed procedure of the heuristic can be given
as follows.

Heuristic to compute connected dominating set:
Step 1: Prepare an empty set, and construct the formula-

tion which consists of (11), (13) and (14).
Step 2: Drop the integrality conditions and let the lower

bound for the objective value as z
Step 3: Solve the linear programming relaxation.
Step 4: Identify the most fractional variable ix variable

which is close to one, and assign the correspon-
ding vertex to the set.

Step 5: If the set satisfy the dominance requirement and
size of the set is greater than or equal to ,z go
to Step 7.

Step 6: Fix the identified ix variables in Step 5 to one in
the formulation and return to Step 3.

Step 7: Check the connectivity among the vertices which
are included in the set. If the set is connected,
stop the algorithm and output the vertices in the
set. Otherwise, go to Step 8.

Step 8: Since the vertices in the set consists of several
disconnected components, identify the minimum
vertex cut which separates one component from
the other components using the procedure des-
cribed in Section 3.

Step 9: Add the corresponding inequality which is viola-
ted by the current solution, and let z := Set +
1 and return to Step 3.

In Step 4, if the several variables are assigned the

same values, we choose the variable whose sum of dis-
tances to other vertices included in the set is the mini-
mum.

Note that the number of iterations is finite, and
since solving the linear programming relaxation, separa-
ting the minimum vertex cut and finding the distances
can be done in polynomial times, our heuristic runs in
polynomial time.

 An Optimization Algorithm for Minimum Connected Dominating Set Problem in Wireless Sensor Network 227

5. COMPUTATIONAL RESULTS

5.1 Performance of the optimal algorithms

We tested the performances of the optimal approa-
ches for the MCDS problem suggested in Morgan Grout
(2008), Yuan (2005) and in this paper. We implemented
the three approaches and tested them on randomly gen-
erated graphs. For each of the approaches, the algorithm
run times are reported. For the approaches given in
Yuan (2005) and this research, the number of generated
inequalities (12) to obtain the MCDS are also reported.
The purpose of the experiment is, to observe the diffe-
rences in the run times for the three exact approaches.

We used the code obtained from http://www.bran
donparker.net/graph_gen.php to generate the connected
random graphs. The code can generate three types of
connected graphs: sparse, medium and dense graphs for
a given number of vertices .V The graph classification

criterion is the number of edges. The number of edges of
the sparse graph is less than (1) / 4V V× − , the number
of edges of the medium graph is approximately ×V
(1) / 4−V , and the number of edges of the dense graph
is greater than (1) / 4V V× − .

For each type of the graphs, we generated 10
random graphs with the number of vertices ranging from
100 to 1000 with an increment of 100. The three appro-
aches were implemented in C++ and ILOG CPLEX 11.0
was used as optimization software. All experiments
were run on an AMD AthlonTM 64 X2 Dual Core (2.70
GHz) with 2GB RAM, and running time is given in
seconds.

Computational results are given in Table 1, 2 and 3
for each type of the graphs. Note that MCDS denotes
the size of the minimum connected dominating set and *
indicates the problem on which the algorithm failed to
obtain the solution within an hour. Also, comparison of
the run time is illustrated in Figure 5, 6 and 7.

Table 1. Comparison of the optimal approaches for sparse graph problems.

Approach in Morgan Grout (2008) Approach in Yuan (2005) Ahn and Park’s approach V
Run time (sec) Inequalities Run time (sec) Inequalities Run time (sec)

MCDS

100 0.55 15 47.52 4 0.047 31
200 61.08 330 505.55 207 4.71 61
300 12.94 174 1442.94 66 1.42 89
400 56.45 * * 674 22.15 131
500 1420.75 * * 501 32.76 155
600 * * * 774 52.92 194
700 * * * 675 72.31 215
800 * * * 1749 446.68 248
900 * * * 978 98.26 281
1000 * * * 314 122 309

Table 2. Comparison of the optimal approaches for medium graph problems.

Approach in Morgan Grout (2008) Approach in Yuan (2005) Ahn and Park’s approach V
Run time (sec) Inequalities Run time (sec) Inequalities Run time (sec)

MCDS

100 11.34 0 4.34 0 0.37 3
200 * 0 31.16 0 6.68 4
300 * 0 92.43 0 23.71 4
400 * 0 233.97 0 108.26 4
500 * 0 1531 0 2228.91 4
600 * * * * * *
700 * * * * * *
800 * * * * * *
900 * * * * * *
1000 * * * * * *

228 Namsu Ahn·Sungsoo Park

When we compared the optimal approaches in
terms of the algorithm run time, each approach showed
different performance depending on the types of the
graphs. For sparse graphs, our approach obtained MCDS
in the shortest run time, then the approach given in
Morgan Grout (2008) follows the next, and lastly, the
approach proposed in Yuan (2005) showed the longest
run time. On the other hand, for medium and dense
graphs, the approach proposed in Morgan Grout (2008)
showed the longest run time to obtain the MCDS, and
the other two approaches showed equivalent performa-
nces. Also, for the given medium and dense graphs, our
approach and the approach shown in Yuan (2005) re-
quired no additional constraints (12) to obtain the opti-
mal solution. This probably due to the density of the gi-

ven graphs.

5.2 Performance of heuristic

In Table 4, we use the same problems from Table 1,
Table 2 and Table 3 and test the performance of our
heuristic. Run time column denotes the running time of
the heuristic, CDS indicates the size of the connected
dominating set obtained from the heuristic and MCDS
means the size of the minimum connected dominating
set.

We can observe that, our heuristic algorithm show-
ed good performance in medium and dense graph pro-
blems, but showed relatively poor performance in sparse
graph problems.

Figure 5. Comparison of run time in medium graph.

Table 3. Comparison of the optimal approaches for dense graph problems.

Approach in Morgan Grout (2008) Approach in Yuan (2005) Ahn and Park’s approach
V

Run time (sec) Inequalities Run time (sec) Inequalities Run time (sec)
MCDS

100 22.31 0 3.25 0 0.53 2

200 895.913 0 19.27 0 8.64 3

300 * 0 79.2 0 38.31 3

400 * 0 247.97 0 192.35 3

500 * 0 626.33 0 669.75 3

600 * 0 2101.14 0 1989.63 3

700 * * * * * *

800 * * * * * *

900 * * * * * *

1000 * * * * * *

Run time(sec)

 An Optimization Algorithm for Minimum Connected Dominating Set Problem in Wireless Sensor Network 229

6. CONCLUSIONS

Designing a routing protocol is one of the im-
portant issues in wireless sensor network. Many virtual
infrastructure based protocols have been suggested, and
one of them is utilizing the CDS. Since forming a small
sized CDS is preferable, many researches have been
devoted on this issue.

In this paper, we proposed an improved optimal
algorithm for the MCDS problem, and extensive com-

putational experiments showed that our algorithm out-
performs the previous approaches in terms of the run-
ning time to obtain an optimal solution. Also, we pro-
posed the heuristic in this research which uses the
mathematical formulation for the MCDS problem, and
the computational experiments show that our algorithm
obtains an quite good solution in a reasonable amount of
time.Since constructing an MCDS is an important issue
in wireless sensor networks, further approach such as
branch-and-cut or meta-heuristic methods (genetic algo-

Figure 6. Comparison of run time in medium graph.

Figure 7. Comparison of run time in dense graph.

Run time(sec)

Run time(sec)

230 Namsu Ahn·Sungsoo Park

rithm, simulated annealing, tabu search, ant colony opti-
mization) can be applied to solve the MCDS problem.

REFERENCES

Alzoubi, K. M., Wan, P. J., and Frieder, O. (2002), Dis-
tributed Heuristics for Connected Dominating Sets
in Wireless Ad hoc Networks, Journal of Commu-
nication Networks, 4(1), 22-29.

Blum, J., Ding, M., Thaeler, A., and Cheng, X. (2004),
Handbook of combinatorial optimization, Kluwer
Academic Publishers, Netherlands.

Carle, J. and Simplot-Ryl, D. (2004), Energy-efficient
Area Monitoring for Sensor Networks, IEEE Com-
puter Society, 37(2), 40-46.

Chen, B., Jamieson, K., Balakrishnan, H., and Morris, R.
(2002) Span: An Energy Efficient Coordination Al-
gorithm for Topology Maintenance in Ad hoc Wi-
reless Networks, ACM Wireless Networks, 8(5),
481-494.

Chen, S., Ljubic, I., and Raghavan, S. (2010), The Re-
generator Location Problem, Networks, 55, 205-
220.

Chen, Q., Fan, W. T., and Zhang, M. (2009), Distributed
heuristic approximation algorithm for minimum
connected dominating set, Computer Engineering,
35(10), 92-94.

Cormen, T. H., Leiserson, C. E., and Rivest, R. L.
(1989), Introduction to Algorithms, The MIT Press,
New York.

Dai, F. and Wu, J. (2004), An Extended Localized
Algorithm for Connected Dominating Set Forma-
tion in Ad hoc Wireless Networks, IEEE Transa-
xtion on Paralel. Distributing, 15(10), 908-920.

Fomin, F. V., Grandoni, F., and Kratsch, D. (2008),
Solving Connected Dominating Set Faster Than

2 ,n
 Algorithmica, 52, 153-166.

Garey, M. R. and Johnson, D. S. (1979), Computers and
Intractability: A Guide to the Theory of NP-Com-
pleteness, W. H. Freeman and Company, San Fran-
cisco.

Guha, S. and Khuller, S. (1998), Approximation algori-
thms for connected dominating sets, Algorithmica,
20, 374-387.

Li, Y., Thai M. T., Wang, F., Yi, C. W., Wan, P. J., and
Du, D. Z. (2005), On Greedy Construction of
Connected Dominating Sets in Wireless Networks,
Wireless Communication Mobile Computing, 5,
927-932.

Min, M., Du, H., Jia, X., Huang, C. X., Huang, S. C. H.,
and Wu, W. (2006), Improving Construction for
Connected Dominating Set with Steiner Tree in
Wireless Sensor Networks, Journalof Global Opti-
mization, 35, 11-119.

Morgan, M. and Grout, V. (2008), Finding Optimal
Solutions to Backbone Minimisation Problems us-
ing Mixed Integer Programming, 7th

 International
Network Conference, Plymouth, United Kingdom,
53-63.

Ng, M. J. and Lu, I. T. (1999), A Peer-to-Peer Zone-
based Two-level Link State Routing for Mobile Ad
Hoc Networks, IEEE Journal on Selected Area
Communication, 17(8), 1415-1425.

Ni, S. Y., Tseng, Y. C., Chen, Y. S., and Sheu, J. P.
(2002), The broadcast Storm Problem in a Mobile
Ad hoc Network, Wireless Networks, 8, 153-167.

Pei, G., Gerla, M., and Chen, T. W. (2000), Fisheye
State Routing: A Routing Scheme for Ad hoc
Wireless Networks, IEEE International Conference
on Communication, New Orleans, LA, 70-74.

Ruan, L., Du, H., Jia, X., Wu, W., Li, Y., and Ko, K. I.
(2004), A Greedy Approximation for Minimum
Connected Dominating Set, Theory of Computer

Table 4. Performance of the heuristic in graph problems

Sparse Graph Medium Graph Dense Graph
V

Run time CDS MCDS Run time CDS MCDS Run time CDS MCDS

100 0.016 39 31 0.03 4 3 0.03 3 2
200 0.16 72 61 0.094 4 4 0.16 3 3
300 0.17 98 89 0.35 4 4 0.73 3 3
400 0.75 133 131 1.33 5 4 1.56 3 3
500 1.5 165 155 2.4 5 4 3.6 4 3
600 1.35 195 194 4.6 5 * 6.4 4 3
700 2.07 221 215 5.89 5 * 10.32 4 *
800 3.12 260 248 7.9 5 * 13.21 4 *
900 5.79 314 281 12.8 5 * 20.95 4 *
1000 4.06 341 309 15.77 5 * 21.29 4 *

 An Optimization Algorithm for Minimum Connected Dominating Set Problem in Wireless Sensor Network 231

Science, 329, 325-330.
Sinha, P., Sivakumar, R., and Bharghavan, V. (2001),

Enhancing Ad hoc Routing with Dynamic Virtual
Infrastructures, 20th

 Annual Joint Conference of the
IEEE Computer and Communications Societies,
Anchorage, Alaska, 1763-1772.

Stojmenovic, I., Seddigh, M., Zunic, J. (2002), Domina-
ting Sets and Neighbor Elimination Based Broad-
casting Algorithms in Wireless Networks, IEEE
Transaction on Parallel Distributing, 13, 14-25.

Thulasiraman, K. and Swamy, M. N. S. (1992), Graphs:
Theory And Algorithms, Wiley, New York.

Wang, L. Y., Zhang, Q., and Liu, A. M. (2009), Distri-
buted MCDS constructing algorithm in Ad hoc
networks, AppliedComputing, 26, 2241-2243.

Wu, J., Li, H. (1999), On Calculating Connected Domi-
nating Set for Efficient Routing in Adhoc Wireless
Networks, 3rd

 ACM International Workshop on Dis-
crete Algorithms and Methods for MOBILE Com-
puting and Communications, Dallas, Texas, 7-14.

Wu, J., Dai, F. (2004), A Generic Distributed Broadcast
Scheme in Ad hoc Wireless Networks, IEEE Tran-
saction on Computing, 53, 1343-1354.

Yuan, D. (2005), Energy-Efficient Broadcasting in Wire-
less Ad Hoc Networks: Performance Benchmar-
king and Distributed Algorithms Based on Network
Connectivity Characterizatio, 8th

 ACM Internation-
al Symposium on Modeling, Analysis and Simula-
tion of Wireless and Mobile Systems. Montreal,
Canada, 28-35.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

