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Cooperative Synchronization and Channel Estimation
in Wireless Sensor Networks

Mi-Kyung Oh, Xiaoli Ma, Georgios B. Giannakis, and Dong-Jo Park

Abstract: A critical issue in applications involving networks of wire-
less sensors is their ability to synchronize, and mitigate the fading
propagation channel effects. Especially when distributed “slave”
sensors (nodes) reach-back to communicate with the “master” sen-
sor (gateway), low power cooperative schemes are well motivated.
Viewing each node as an antenna element in a multi-input multi-
output (MIMO) multi-antenna system, we design pilot patterns to
estimate the multiple carrier frequency offsets (CFO), and the mul-
tiple channels corresponding to each node-gateway link. Our novel
pilot scheme consists of non-zero pilot symbols along with zeros,
which separate nodes in a time division multiple access (TDMA)
fashion, and lead to low complexity schemes because CFO and
channel estimators per node are decoupled. The resulting training
algorithm is not only suitable for wireless sensor networks, but also
for synchronization and channel estimation of single- and multi-
carrier MIMO systems. We investigate the performance of our es-
timators analytically, and with simulations.

Index Terms: Channel estimation, Cramér-Rao bound, multi-input
multi-output (MIMO), sensor networks, synchronization.

I. INTRODUCTION -

There has been a growing interest towards wireless sensor
networks that emerge as a new wireless network paradigm cap-
italizing on the cooperation among a large number of sen-
sors [1]. A distinct feature of such networks is that reliability
and fault tolerance is achieved through combining information
from distributed sensors. These characteristics are attractive for
both commercial and military communication networks [1]-[2].
Moreover, efforts are under way to standardize the various layers
of wireless sensor network communications; the IEEE 802.15.4
low rate wireless personal area network (WPAN) standard, and
IEEE 1451.5 wireless smart transducer interface standard [3].

A bulk of research in wireless sensor networks focuses on
low power cooperative schemes. However, most works assume
error-free communication channels, and perfect synchronization
between each node-gate link [4]. Since pragmatic wireless links
entail channel-induced interference, as well as timing and fre-
quency offsets, it is necessary to account for these effects when
designing distributed sensor networks. This motivates us to pur-
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sue channel and carrier frequency offset (CFO) estimation algo-
rithms for wireless sensor networks.

We suppose that each sensor node has a single antenna to
transmit and receive data, while the central processing unit
(a.k.a. gateway, or fusion center) is capable of deploying several
receive antennas. In this setting, the overall sensor network can
be viewed as multi-antenna point to point link. The ergodic (av-
erage) capacity of wireless multi-antenna channels can increase
linearly with the number of antennas at the transmitter/receiver,
provided that perfect channel estimates are available at the re-
ceiver [5]-[7]. Errors in the channel and synchronization esti-
mates can significantly degrade error performance, and capac-
ity. On the other hand, as the number of sensor nodes increases,
channel estimation becomes more challenging because the num-
ber of unknowns increases accordingly.

Since this multi-sensor environment is similar to a multi-
antenna system, existing multi-input multi-output (MIMO)
channel estimators apply. For example, the channel estimators
in [8]-[10] can be recast in a wireless sensor network setting,
even though they do not address CFO estimation. The impor-
tance of the latter can be appreciated if we recall that sensor
oscillators can never be perfectly synchronous. Furthermore,
even with ideal oscillators CFOs are present in a mobile en-
vironment with pronounced Doppler shifts. For point to point
links, existing CFO estimators can be either data-aided [11],
[12], or non-data aided [13]. Blind methods typically require
longer data records, and have rather high computational com-
plexity. On the other hand, data-aided schemes based on training
symbols (known to both transmitter and receiver) are bandwidth
consuming, but they are computationally attractive. Since sen-
sors are generally limited in power and computational capabil-
ities, training schemes with low complexity and low duty cycle
are well motivated.

In this paper, we consider cooperative synchronization and
channel estimation in wireless sensor networks. Specifically,
we design training patterns for estimating the associated mul-
tiple CFOs and frequency selective channels. Our goal should
be contrasted with previous works that either estimate a single
CFO common to all transmit antennas [14], or a single-input
single-output (SISO) channel [12]. We design training symbols
that enable decoupling CFO and channel estimation from sen-
sor to sensor, based on time division multiple access (TDMA),
which in turn leads to low complexity and low duty cycle oper-
ations. Unlike existing algorithms [11], [12], our CFO estima-
tors have full acquisition range, and the proposed channel esti-
mators are not only suitable for wireless sensor networks, but
also apply to single carrier multi-antenna point to point links.
In addition, our training scheme can be directly applied to a
multi-user multi-carrier system having distinct CFO between
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Wireless links

Sensor field

Fig. 1. Schematic system model for wireless sensor networks.

each transmit-receive link, which has not been considered in any
existing literatures.

The rest of the paper is organized as follows. In Section II, we
describe our system model. The algorithms for estimating multi-
ple CFOs and channels are derived in Section III. In Section IV,
we show that our estimator can be used for multi-user multi-
carrier systems. Performance of our estimators is analyzed in
Section V. In Section VI, simulation results demonstrate the
potential of our algorithms, while Section VII concludes this
paper.

Notation: Upper (lower) bold face letters indicate matrices
(column vectors). Superscript (-)7* will denote Hermitian, ()7
transpose, and (-)* conjugate. The real and imaginary parts are
denoted as R[-] and S[-]. F[-] and Var[-] will stand for expec-
tation and variance, tr[-] for trace operation, and diag[z] for a
diagonal matrix with z on its main diagonal. For a vector, || - ||
denotes the Euclidean norm. We will use [A]y ,, to denote the
(k,m)-th entry of a matrix A, and [z],, for the m-th entry of
the column vector &; Iy to denote the N x IV identity matrix;
[Fnlmn = N Dexp(—j2rmn/N) the N x N fast fourier
transform (FFT) matrix.

II. SYSTEM MODEL AND ASSUMPTIONS

Fig. 1 depicts our system model that includes N, sensors
(nodes) in the sensor field communicating with a central pro-
cessing unit (PU) equipped with multiple antennas signalling
over wireless channels. The fading channels between each sen-
sor and the PU entail rich scattering and have delay spread
greater than the symbol period, i.e., they are frequency selective.
Define the discrete-time baseband equivalent channel from the
p-th sensor to the v-th receive antenna as h(*#)(1), I € [0, L}.
We note that the channel sounder can be used to characterize the
wireless channel [15]. In addition to multi-path, this equivalent
channel incorporates also transmit- and receive filters, as well as
timing offsets in the form of pure delay factors. Let the CFO be-
tween oscillator of the p-th sensor and the v-th receive antenna
of the PU be denoted as f{** (in Hz), which could be due to
Doppler, or, mismatch between sensor-receive oscillators.

To estimate the N, channels and the Ny CFOs for each re-
ceive antenna, pilot symbols {pu(n)}ﬁ’;l, neZ:=[0,N-1],
are transmitted by the u-th sensor. Samples at the v-th antenna
output of the PU can be written as

Ng L
z,(n) = Y N WG (D — D () (D)

p=1 =0
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where n € [0, N — 1]; w&* = 2r f{"" T is the normalized
CFO with T denoting sampling period which is chosen equal
to the symbol period; and 7, (n) is zero-mean, white, complex
Gaussian distributed noise with variance o2, .

The PU is responsible for scheduling sensor transmissions.
To facilitate scheduling, we require that the sensor signals be
delivered to the PU with a small delay, which can be ensured if
the PU transmits a beacon, that sensors can synchronize to. As
timing acquisition is beyond the scope of this paper, we suppose
that it has been accomplished, and incorporate residual timing
errors in the channel order L. The information-bearing sym-
bols are transmitted following the training preamble. Because
the channel is frequency selective, time-dispersive interference
emerges between information and training symbols. The re-
ceived samples z,,(n) in (1) correspond solely to the transmitted
pilots, excluding those that contain interference from the infor-
mation symbols.

On the other hand, sensor networks need to handle thousands
of sensor nodes. We assume that this problem can be solved by
adapting a very efficient medium access control (MAC) tech-
niques to accommodate thousands of sensor nodes [3], which is
beyond the scope of this paper. In this paper, we consider mul-
tiple access in the physical layer, for which limited number of
sensor nodes can access the channel at the same time.

III. ESTIMATING MULTIPLE CFOS AND CHANNELS

We wish to estimate the carrier frequency offsets {wS"""’ e

and the channels {h(”’“)}f;b where h#) .= [p(#)(0), - |
h#)(L)]T, based on the v-th antenna received samples
{z.(n)}N=} and the pilots {p”(n)}ﬁ’;l, n € Z. Equation (1)
shows that estimating CFOs and channels from z,, (n) and p,,(n)
is a non-linear problem, whose solution is computationally pro-
hibitive. We will thus decouple CFO and channel estimation for
each sensor using a TDMA scheme, and we will show that the
resulting estimators enjoy low complexity and guarantee identi-
fiability. TDMA is chosen because it leads to the desirable low
duty cycle sensor operation, which is important for energy effi-
ciency.

For clarity, we will start our design of pilot symbols with a
single sensor. Design of pilot symbols for multiple sensors will
be described in Section III-B.

A. Single Sensor

For a single sensor, we drop the sensor index i, and thus (1)
reduces to

L
z,(n) = eFwsn Z A (Dp(n — 1) + n,(n) 2)
1=0

where n € [0, N—1], and N is the total number of pilot symbols.
Let us define the set of pilot symbols as Z,, := [0, N,, — 1], where
N, =N - L.

To further reduce complexity, we also wish to separate CFO
from channel estimation. Note that the CFO appears as a multi-
plicative factor in each received symbol. This suggests selecting
pilots to keep the sum in (2) identical for at least two z,(n)’s,
and estimating the CFO from their phase difference.



286 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 7, NO. 3, SEPTEMBER 2005

Targeting such an approach, we select pilot symbols as fol-
lows.
_J V"
n) = { 0

where p is an arbitrary complex number with [p|> = 1, and &, is
the energy of the training symbol, which could be chosen equal
to the energy of the information symbol £,. The set of zero
pilots is defined as Z,, , := [N,, N — 1].

Substituting (3) into (2), we obtain

,nel,

, neTy, ©

\/76‘7(”(,’)“ nzh(u) l)p*l +n, ( ) (4)
=0

forn € [L,N, —1]. f HV)(p) := T2
noise free version of (4) can be Wntten as

R p=t £ 0, the

z,(n+1)= peng”’xu(n), forne [L,N, —2]. (5

Clearly, we require N, — 2 > L in (5), which implies that the
minimum number of pilots is N, > L + 2. The CFO estimator
follows easily from (5) in closed-form

Np—2

D Sle(n+ptai )] ) /

n=L

o) = tan~
(6)
z Rz, (n + 1)p "z, (n)]

and should be intuitively expected since in the absence of noise,

the phase of z,(n + 1)p*z(n) equals w). We also note from
(6) that the accuracy of CFO estimator increases, as the number
of training symbols IV, increases.

Based on the estimated CFO in (6), we can compensate for
the CFO w((,") from x,,(n) in (2), and proceed with channel esti-
mation. To derive our channel estimator, we temporarily assume
that the CFO estimate is perfect ie., w(y) = wg ) By simply
forming y,(n) := exp (— jo¥ n)wy(n) we then obtain

L

= Zh(”)(l)p(n — 1) +n(n), for n€[0,N —1]. (7)

Y (n)

Using the least-squares (LS) approach, we can casily estimate
the channel as (c.f., (7))

hl = (P"P)'PMy, (8)
where P is a Toeplitz matrix with entries [P]; ; := p(i—j), 0 <
i<N—-1,0<j<Landy, := [1.(0), -,y (N -1 If
the channel covariance matrix R,y := F [h('/)h(")H] and the
noise variance 0727 are available, a linear minimum mean square
error (LMMSE) channel estimator can be used instead of the LS
one in (8), which can be expressed as

h(LVI\)/IMSE = (‘777 h(u) +P"P) Py, )

The natural question that arises at this point is whether we
can always find p such that H(*)(p) # 0. If p in (3) satisfies

H®)(p) = 0, then CFO is non-identifiable. To guarantee iden-
tifiability, one needs to collect additional observations (4) for
more than L distinct p’s. If we choose (L + 1) points p, € C,

l=0,--,L,such that p,, # pnp, Vm # n, we have
H® (o) NN T W A g ()
H") (py) 1 oprt o " h)(1)
H®(pp) 1 Pil PZL R(L)
:=©h) (10)

We note that the Vandermonde matrix © in (1Q) has always
full rank, since h*) = 0, and we can obtain at least one
nonzero H®)(p;) among (L + 1) blocks. The set {pl}l 2o 18
clearly not unique. For example, if we select p; = 727/ (L+1)
for{ = 0,1,---,L, then ® in (10) becomes unitary matrix
(L+1)Fryq, where Fryqisan (L + 1) x (L + 1) FFT
matrix.

B. Multiple Sensors

In the previous subsection, we designed the pilot pattern to
estimate the CFO and channel corresponding to a single sensor.
We found from (3) that at least L + 2 consecutive nonzero pi-
lot symbols guarded by L zeros are sufficient. In this subsection,
we consider multiple sensors, where distinct pairs of sensors and
receive antenna elements have distinct channels and CFOs, i.e.,
there are N, channels, and N, CFOs to be estimated per receive
antenna. In the following, we will show how relying on TDMA,
we can design {p, (n)}ﬁ;l, n € T for the u-th sensor, so that
signals from different sensors can be orthogonally separated at
the PU. Let us recall from (1) that Z was defined as the set of
indicesn € [0, N — 1] :=T.

To estimate {w’"", h#}7. on a per sensor basis, T
should be orthogonally separated into /N non-overlapping sub-
sets, i.e., {Ig}ﬁ’;l should obey 7/t NZH? = B, Y # po.

If a sequence of length IV, is linearly convolved with a chan-
nel of length L + 1, the resulting sequence has length N, + L.
This means that L guard zeros should be appended to N,, con-
secutive non-zero pilots to avoid interference among sensors.
Thus, time is divided in sensor-specific slots, with each slot con-
taining NV, + L symbol periods. This implies that the whole
training block per sensor should have length N = N,(N, + L).
Now we can divide the IV, 4+ L slots per sensor into two sets

=((Np + L)(p — 1), (Np + L) (e — 1) + Np — 1],
bo :—[(Np +L)(p—1) + Np, (Np + L)p ~ 1]

I

where I;j N I{f,o = (,Vyu, and the sets I[’f and Z{f,o represent
the parts of N, nonzero pilot symbols and L guard zeros corre-
sponding to the yu-th sensor.
Similar to (3), our pilot pattern can be chosen as
_ { Vet el
0 , otherwise

pu(n) (11)

The data in (1) can now be orthogonally separated into N, sets
of observations, each having the same structure as that for a sin-
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gle sensor. For the u-th sensor, we thus have

Z v u)
(12)
= G g Z B (1)~ 4, ()
1=0

— e]w

xu,u( ’I’L—l)+77,/( )

where n € [(Np + L)(n — 1), (Np + L) — 1].

By using the fact that z,, ,(n+1) = pej“’t(v"'“)xl,,”(n) in (12),
we can estimate %" and h*#) for the p-th sensor in the v-th
antenna of the PU using (6) and (8) as follows.

d,(()u,u) —

(Np+L)(p—1)+Np—2
- >
ne=(Np 4 D) (= 1)+L
(Np+L)(p~1)+Np—2

/ > Rlz,,u(n+1)p*z; ,(n)]
n=(Np+L)(u—1)+L

tan [xl/ ,u(n+ 1)p I/H( )]

(13)

and
hig" = (P"P) PNy, , (14)
where You = [yl/,u((NP + L)(p’ - 1))a T ,yl/,u((Np + L).U' -

1)) with entry y,, ,(n) = exp(—jcb((,"’”)n)xu,“(n), and P has
the same structure as that of (8). Notice that we utilize max-
imally the advantages of TDMA scheduling to estimate CFOs
and channels.

C. Further Considerations

We have proposed CFO and channel estimators for wireless
sensor networks. Following remarks are pertinent to our CFO
and channel estimators in (6) and (8).

1. The training patten for a single sensor consists of N, con-
secutive non-zero pilots, and L guard zeros. To guarari-

tee identifiability for any channel and any CFO w(y M e
[—7, ), one needs to collect at least (L + 1) blocks for
distinct p’s.

2. Our CFO estimator in (6) is reminiscent of the one in [11],
where [11] employed two consecutive and identical train-
ing blocks with block length N for the single antenna sys-
tem. However, the acquisition range of our CFO estima-
tor is [—m,7) for any channel of order L, which is to be
contrasted with [11] whose acquisition range is limited to
(1/N)[—m,7) and [17] whose acquisition range depends
on the number of identical parts in a block. The perfor-
mance comparison regarding this issue will be shown in
Examples 1 and 4 of the Section VI.

3. The closed form estimator in (6) has lower complexity than
the maximum likelihood estimator (MLE) in [12], which
being nonlinear and statistical, requires many data blocks,
and grid search.

4. For CFO and channel estimation, L + 2 non-zero pilots,
equal to the number of unknowns (L + 1 channels and
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Training Payload
NALYUN VLU NLL
P, 0 0 0 0 0 0 Sensor 1
P O 0 0 0 0 0 Sensor 2
P 0 0 0 0 010 Sensor 3

Fig. 2. Pilot pattern p,, with N, = 3 sensors.

CFO), are only needed. This minimal training confirms
band-width efficiency.

5. Our algorithm can be easily applied to packet transmis-
sions, where the pilot part is attached to the payload part.
The latter may be quite long, and L guard zeros are re-
quired to decouple it from the pilot part. In this case,
CFO estimation using two identical packets required by
[11] can not be used, since the resulting CFO acquisition
range shrinks considerably.

6. There is a tradeoff between estimation accuracy and band-
width efficiency. If more pilots are used, the performance
of (6) can be improved, at the expense of bandwidth-
efficiency, which will be demonstrated in Example 4 of the
Section VI.

Additional remarks for the multi-sensor case are now in order.

1. The number of pilot slots per sensor is N = (N, + L) N,
where N, > L + 2. The pilot pattern is depicted in Fig. 2,
together with the payload part separated by L guard zeros.
It follows by inspection that the training sequences of mul-
tiple sensors are scheduled in a TDMA fashion.

2. The duty cycle for the pilot part is just N, /N, which im-
plies that our scheme is energy efficient per sensor.

IV APPLICATION TO MULTI-USER MULTI-CARRIER
SYSTEMS

In the previous section, we proposed a training pattern for es-
timating multiple CFOs and multiple channels in wireless sensor
networks where single-carrier transmissions were considered.
Because orthogonal frequency division multiplexing (OFDM)
has been widely adopted by many standards such as DAB, DVB,
HyperL AN, IEEE 802.11a, and IEEE 802.16a, we want to ap-
ply our scherme to OFDM systems which exhibit sensitivity to
CFO [23]. In this case, mobile users in an uplink orthogonal
frequency division multiplex access (OFDMA) system are con-
sidered. In this section, we will show that the training pattern of
the previous section can be also exploited to synchronizé wire-
less MIMO systems that employ multi-carrier transmissions.

Considering multi-carrier operation, we suppose that the total
number of subcarriers is N := N;(N, + L), where N,, of them
are used for data transmission, and L is the number of guard
(virtual, or null) subcarriers per mobile user. Notice that N, is
the number of mobile users. The received samples at the v-th
antenna in the base station are given by

N-1
Z Jw§ I Zh(u ) (1) Z w, (k)ed2mk(n=D/N
1=0 k=0

+77V( )a n e [OaN+ L— 1] (15)
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where the first L samples equal the last L ones and thus consti-
tute the cyclic prefix (CP), and u,, (k) is the pilot symbol trans-
mitted on the k-th subcarrier of the u-th mobile user. What is
different in (15) relative to (1) is the transmission modality; i.e.,
N carriers are used here. We note that the other parameters in
(15) are the same with those in (1) the same models of the chan-
nel and CFQO. The vector-matrix counterpart of (15) after dis-
carding the CP from (15) can be obtained as (see Appendix C).

Ns
Y, = Z ej“f’V’”)LDN(wé“’“))ﬁ(”’“)FEuu + v, (16)

p=1
where y, = [1.(0), - ,5 (N — 1))T, and u, =
[2,(0), -+ ,uu(N — 1)]T should be judiciously designed to

exploit the advantages of simple estimators in the previ-
ous section, H®#) is a circulant matrix with first column
[R9(0), -+ AW (L),0,---, 0]T, and Fy is an N-point
FFT matrix. The CFO matrix is defined as Dy (w8"") =
diag|[1, eiws™ .. edws”™ (N=1)] We note that (16) is differ-
ent from that in [16], where we derived CFO and channel es-
timators for MIMO-OFDM having common CFO between all
transmit and receive antennas. In contrast, CFOs between each
transmit-receive link are allowed to be distinct here.

To estimate {w((,"’”)}f:fs and {h(® “)} #, in (16), we can use
the cooperative synchronization scheme in the previous section,
for which {u,} 2[;1 should be cooperatively designed for each
mobile user. To further study this application and the perfor-
mance of our estimator, we introduce the vector-matrix counter-
part of (1) as

NS

xl/ i Z DN(wgu’M))H(V’u)p‘u, + T]ll
p=1

a7

where H#) is an N x N Toephz matrix having the
first column [R(#)(0), - -+, R®#)(L),0,--- ,0]T, and p, :=
[pu(0), - ,pu(N —1)}T. Recall that our focus on determining
training symbols has been to find {p, } ﬁ’;l so that estimators of
CFO w&™ and channel h(**®) for each sensor can be orthogo-
nally separated by TDMA.

If we select training symbols as u,, := Fyp,, in (16), where
p,. follows the training pattern in (11), then (16) reduces to

Ny
X, = Z enguyn)LDN(w(()Vyﬂ))I——'I(Va/—")p’u -+ 7,

p=1

(18)

We note that circulant and Toepliz matrices obey follow-
ing property. ﬁ(”’“)sz = H(”’”)sz, where T,, :=
In-1 ON—1)x r]¥. In our training scheme, the last L zeros
in p,, allow H®#) to be replaced by H*#) which yields the
same structure as in (17). Now we can directly use our estima-
() N
b

tors in (13) to estimate multiple CFOs {ws 2 and channels

{h(»»)} 7| from x,, in (18) for these multi-carrier systems.

V. PERFORMANCE ANALYSIS

To benchmark the performance of our estimators, we de-
rive the Cramér-Rao lower bound (CRLB) of CFO. Because

our CFO estimators among sensors are independent, the single-
sensor CRLB is considered. Now the system model in (17) be-
comes X = Dy (w,)Hp + 77, where we drop the sensor indices
(v, 1). In this case, we can derive the CRLB as follows.

-1

CRLB,, = (%u [D(k)PRhPHD(k)]> (19)
7

where D(k) := diag[0,1,--- , N — 1], R, := E[hh™], and

P is a Toeplitz matrix as in (8). We observe from (19) that as

the number of training symbols N, (and thus V) increases, the

CRLB for CFO decreases.

For our estimator in (13), we consider the conditional
mean and variance of &%) glven W and B (n) =
& exp(jl P n)pm Sy h (1)p~ forn = (Ny+ L) (-
1)+ L, - ,(Np+ L)(r — 1) + N, — 1. For small errors, we
can approximate the conditional mean and variance as follows.

( )}(N p+L)(u—1)+Np —1]

El@lm— n—=(N, +L)(,u D+L

w§ MW, { By
(20)

and

N y Nyt L)(p=1)+N,—1
VaI'[UJ(() o4 | Wg 7H); {61},/_/,( )};:(Npl(g)(u)—l)j—L ]

_ 1 2D
- (N, —L—-1)SNR

where 02, = N,/2, and SNR := (£,/02 ) Y"1, |[B&H (D)2,
We note from (20) that the CFO estimator is conditionally

unbiased for small errors, and from (21) the variance of the CFO

estimator decreases as the number of training symbols and SNR

increase.

VI. SIMULATIONS

We conducted simulations to verify the performance of our
designs for wireless sensor networks. In all experiments, we
considered an exponential channel model, for which taps are
independent complex Gaussian random variables with aver-
age power profile that decays exponentially, and additive white
Gaussian noise with zero-mean and variance 0’,,2]'/. The informa-
tion symbols were drawn from a QPSK constellation.

Example 1 (acquisition range of CFO estimator): To con-
firm the acquisition range of our CFO estimators, we compared
against the single sensor (N, = 1) algorithm in [11] where the
maximum likelihood estimator of the CFO was given based on
two consecutive and identical training blocks. We note that our
CFO estimation can be done within a block as shown in (3).
Fig. 3 depicts “true CFO” versus “estimated CFO” when the
channel order is L = 3 and the block length NV is 8 and 12. The
ideal line, for which the estimated CFO exactly follows the true
CFO, is also shown for comparison. We deduce from Fig. 3 that
our CFO estimator enjoys full acquisition range like ideal case,
while the algorithm in [11] has the limited acquisition range, i.e.,
the CFO estimator of [11] fails to estimate CFO in the out of its
acquisition range that is inversely proportional to the block size
N. For example, if true CFO is w,, == 7, then our CFO estimator




OH ez @l.: COOPERATIVE SYNCHRONIZATION AND CHANNEL ESTIMATION...

s —— T T
o |deal
X Proposed
ok O Algorithm in [9] (¥=12) |
v Algorithm in [9] (N=8)
1 o
2
g 1
ke G . - < o }
2 S - 1 . ] 1].9, b 117 7 |
g Vs W& s [ vV 2V
<
w
_ i
ol 4
A s . ‘ _— s .
~3 -2 -1 0 1 2 3
True CFO w,

Fig. 3. CFO acquisition range comparison with channel order L = 3.

NMSE of CFO
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Fig. 4. Average normalized MSE for CFO.

can give the estimated CFO, while [11] fails to estimate CFO,
as shown in Fig. 3.

Example 2 (performance of CFO estimator): Fig. 4 shows
average normalized mean square error (NMSE) of &, for N, =
1, 2, 4, where L = 3, and the CFOs are uniformly selected
in the range [—0.57,0.57]. The number of pilot symbols per
node is N, = 4(L + 2), which is more than the minimum
required number of pilot symbols L + 2. As a means of
comparison, we calculated the normalized mean square error
(NMSE) of CFO defined as E[||&, — w,l|?]/||wo||?, where
wo i= W&, W NIIT and likewise for &,. The CRLB
we derived in Section V is also shown as a benchmark. Thanks
to the TDMA-based cooperative scheduling, we infer that the
performance of our CFO estimators does not depend on the
number of sensors.

Example 3 (performance of channel estimator): To test
the performance of multi-channel estimation, we used N, =
1, 2, 4, and L = 3, with the CFOs being randomly selected
in the range of [-0.57,0.57]. Single sensor CFO estimators
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Fig. 6. Average normalized MSE of CFO for different number of pilots.

were calculated first as in (5). Based on the estimated CFOs,
Fig. 5 shows channel estimation performance. To quantify chan-
nel estimation performance, we computed the average channel
NMSE as El[j|h — h|?]/||h||?, where h was obtained using the
LS method. The ideal case assuming perfect CFO estimation
is shown for a benchmark to isolate the performance of chan-
nel estimation, which is also confirmed to be independent of the
number of sensors.

Example 4 (tradeoff between performance and the number
of pilots): Although the minimum number of pilots for our CFO
and channel estimator is L -+ 2, the use of large number of pi-
lots gives better performance, which will be demonstrated here.
The parameters used in this example are the same with those in
Examples 2 and 3. Since we already checked that the perfor-
mance is independent of the number of sensors, we test the case
of Ny = 1 with N = 32 and L = 3. Figs. 6 and 7 show the
performance of CFO and channel estimator, respectively, when
Np = (L +2), 3(L+2), and 5(L + 2) are used. It is observed
that our estimator with larger number of pilots achieves better
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performance.

Example 5 (multi-carrier transmissions): To examine the
performance of CFO and channel estimator with multi-carrier
transmissions, we compare our method with an existing method
in {17] for single antenna. For our algorithm, we use N =
32 (i.e., the number of subcarriers), carrier frequency 5 GHz,
OFDM symbol (without CP) period 3.2 us and signal band-
width 10 MHz. To maintain the same transmission rate, the pilot
length of [17] is 32 with 4 identical parts, i.e., the block length
is also 32. In Fig. 8, two cases are considered: w, = 7/10
which is chosen Wwithin the acquisition range of the method in
[17], and w, = 7/4 which is out of the acquisition range. If
the CFO is chosen within the acquisition range of the method in
[17], our method has comparable performance with the one in
[17]. For the case of w, = /4, we also observe from Fig. 8
that our algorithm still enjoys performance comparable to the
first case (w, = 7/10), while the method in {17] fails because
its acquisition range is w, € [~7/8,7/8]. Moreover, differefit
from the method in [17], our method also considers channel es-
timation. Fig. 9 shows the performance of tlie channel estimator.
Although our channel estimator is not optimial for OFDM sys-
tem, the proposed pilot design enables to estimate the CFO and
channel together within one OFDM block.

VII. CONCLUSIONS

In this paper, we addressed synichronization and channel esti-
mation in the context of wireless sensor networks. Based on ju-
diciously designed pilot symbols, we separated CFO and chan-
nel estimation per node. The low complexity and low duty cycle
features of our schemes make them attractive for power-limited
sensor network operation. In addition to energy-efficiency, our
CFO estimator exhibits full acquisition range. We also showed
that our CFO and channel estimators can be used for multi-user
multi-carrier systems. Both analytical and simulation results
confirmed improved estimation performance relative to compet-
ing alternatives.
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APPENDIX A: CRAMER-RAO LOWER BOUND

We derive Cramér-Rao lower bounds (CRLB) to benchmark
our estimators. The input-output relationship for a single-sensor
is given as x = Dy(w,)Hp + 7. Because convolution is a
commutative operation, we deduce that Hp = Ph, where P is
a Toeplitz matrix having elements [P]; ; := p(i — j), 0 <3 <
N —1, 0<j < L, which leads to x = Dy (w,)Ph + 7.

The CRLB for the CFO estimator is defined as

ge-=1)

where p(x|w,, h) is the probability density function of x condi-
tioned on w, and h.

CRLB,, := (22)

For a given (w,, h), the observation vector x is Gaussian with
mean Dy (w,)Ph, and covariance matrix ¢21y. Thus, the like-
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lihood for the parameters (h,w,) takes the form

p(x|wo, h) =

For one observation block, the log-likelihood function is given
as

Inp(x|w,, h) =
. b~ Div(10o)PHIfx — Dy (o) Ph.

n

Nln(27r0%) - 23)

By differentiating Inp(x|w,, h) as in (23) with respect to wo,
we obtain that

alnp(x‘woah) _ _ic\. H
b = U?’\S(T] D(k)Dn (w,)Ph) (24)

where D(k) := diag[0,1,--- ,N —
tion of CFO is given as

1]. Thus the Fisher informa-

Anp(x|w,, ) 2 1 H
E||———2| | = tr [D(k)PR,PD 2
‘ T U%tr[ (k)PRx (k)] @5
where Ry, := E[hh”']. As aresult, the CRLB of CFO estimator

is given as the inverse of the Fisher information.

-1
CRLB,,, = (é—u [D(k)PRhPHD(k)]> (26)

n

APPENDIX B: PROOF OF (19) AND (20)

We derive an approximate closed form expression for the

cond1t10na1 mean and variance of oM given W and

Buu(n) = /& exp jwo () pr S hE (D)p~! for n =
(Np —i—L)(u 1)+L , (N —|—L)(u—1)+Np—1.Toobtain
the tangent of the phase error in (13), we have

tan(@®H — w

Q+N,—2

>

n=Q+L
Q+Np—2

* * = w<"“)
/ 2 Rlzy,u(n+1)p 2y u(n) e’ ]
n=Q+L

) =

%[:L'V,H(Tl + 1)p*xl,,”(n)*6_]“’(” u)]

@7

where @ := (N, + L)(pp — 1). As o8 — w{M)| « 1 holds
for high SNR, the tangent can be approximated as

Q+Np—2 Q+Np—2
pirm —wi = 3T sG] /| Y] RG]
n=Q+L n=Q+L

(28)
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where G = (pfBu,u(n) + m(n + 1)6_”‘(’”’“))(#’*

suln) +
p*n%(n)). Athigh SNR, (28) can be approximated by

djg”’#) _ w(()”v”) ~

Q+Np—2

S8 (u(n+ 1), (0 + 1) + |60 (1) o (1)

n=Q+L
Q+N,—2

I 1ePIBeum)l®

n=Q+L
(29

from which we can find that
v v N
WP | Wl (B, ()R = 0.

The conditional variance of our estimate can be easily deter-
mined by taking expectation of the square of (29) to result in

EloW — (30)

] Q+N,—2 Q+N,—2
§E Z 77u(”+1)/8yu<”+1 +|,0| Z 771/ ﬂVH( )
n=Q+L n=Q+L
Q+Np—2 2
/1p1*E Yo 1Bl
n=Q-L

€)Y

Notice that we designed training symbols so that |p|> = 1 and

noise variance a%u = N, /2. Thus we can obtain from (31) that

1 11
&/N, 2&/N,

———(1+1pl") (32)

1
4lol*
where &, is the received total signal energy for an interval where
CFO estimation can be performed, which is defined as

Q+Np—2
> E[Bu(m)B ()]
ne@rt i (33)
= (N, = L=1)& Y WM 0.
=0
Finally, we have
— 1
Varlo @) | @ (6, (19Nl
b B et 1= (R T 15N
(34)
where SNR := (&, /02 )Zl |h8) (1|2,

APPENDIX C: DERIVATION OF (16) FROM (15)

Let us consider a vector a,, := [u,(0), -+, u,(N—1)]T with
length NV, for the u-th mobile user. In OFDM system, we im-
plement N-point inverse FFT (via left multiplication with F' N)
on each block wu,, and insert the cyclic preﬁx (via left multipli-
cation with the mairix operator T := [I7n In]7, Where
I« denotes the last L columns of Iy). After parallel to se-
rial (P/S) conversion, the resulting blocks {1, := TchqA}uu}
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of size P x 1 are transmitted through frequency selective chan-
nel, where P = N + L.

The received samples at the v-th antenna in the base station
are given by (15). The sequence x,(n) is then serial to par-
allel (S/P) converted into P x 1 blocks with entries z, :=
[2,(0), - ,2,(P — 1)]". Then, we discard the cyclic prefix
of length L by left multiplying x, with the matrix R, :=
[Onxr In]. Denoting the resulting block as y, := R ,x,,
we obtain the following vector-matrix input-output relationship.

Z chDP

v € [1,N,], where i, := [1,(0),7m,(1), - ,m (P —~ 1)]T
with P = N + L; H®" isa P x P lower triangular Toeplitz
matrix with first column [A(#)(0),--- , h#)(L) 0, -, 0]T;
and D p(wi* ) is a diagonal matrix defined as D pwd My =
dlag[l er( #) . jw(u’u)(P_l)]

Based on the structure of the matrices involved, it can be read-
ily verified that R, Dp(w$"") = ei%6™*'L Dy (Wl N Rep,
where Dy (w$*)) := diag[1, &7 e3ws” “)(N_l)]. Fol-
lowing this identity, let us define H (V’H) = R,H (”’“)TC,,,
where the N x N matrix H (on) is circulant with first col-
umn [R"#)(0), -, R (L),0,--- , 0]7. Letting also v, :=
R_,m,,, we can rewrite (35) as

(v H))H(V’#)TCPF%UH + Repm,  (35)

N,
,= > LDy W Y P, v, (36)

which turns out to be (16).

In the absence of CFO (w$"*) = 0), taking the FFT of g,
gives the frequency selective channel equivalent to a set of flat-
fading subchannels, i.e., the conventional MIMO-OFDM sys-
tem [16]

§:= Fny, Nu, + Fyu,  (37)

N
=Y DR
p=1

where we use the fact that Fy H (U’#)F?\{, is a diagonal matrix

Dy (B™?), for which ) .= [ (0), ... | R (2m(N—
1)/N)]T with h(#)(27n/N) denoting the (v, )-th channel’s
frequency response value on the n-th FFT grid, which is given
by A (27n/N) : Zz ~o KM (1) exp(—j2min/N).
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