• Title/Summary/Keyword: wireless sensor interface

Search Result 140, Processing Time 0.026 seconds

Pet Location Tracking and Remote Monitoring System using a Wireless Sensor Network (무선센서네트워크를 이용한 애완동물 위치추적 및 원격모니터링 시스템)

  • Hwang, Sung-Ho;Park, Jae-Choon;Kwon, Ki-Hyeon;Choi, Shin-Hyeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.1
    • /
    • pp.351-356
    • /
    • 2011
  • In this paper, we design a pet location tracking and remote monitoring system that uses ultrasonic, temperature, humidity and illumination sensors to study behavioral patterns and habits. Using ultrasonic waves to calculate distances, a WSN(Wireless Sensor Network) was constructed to transmit data at pet's location, such as temperature, humidity and illumination, to a sink mote. Data received by the system are stored in the database in real time to trace pet's location. Interference among transmitting motes was eliminated by sequentially transmitting RF beacons using sink mote's beacon as the reference signal. Experiments were performed with the laboratory prototype of a pet animal monitoring system implemented for this study. The system analyzes locations of a pet and displays movement patterns, areas of movement, temperature, humidity and illumination using a GUI (graphical user interface).

Study on the Design Method of the Energy Harvesting Smart Sensor for Implementing IoT Service (IoT 서비스 구현을 위한 에너지 하베스팅 Smart Sensor 설계 방안 연구)

  • Jang, Ho-Deok
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.1
    • /
    • pp.89-94
    • /
    • 2018
  • This paper investigated the design method of the smart sensor for implementing IoT (Internet of Things) service. The power supply of sensor consistently acquisting data is based on the energy harvesting technology and designed with piezoelectric transducer not affected by surrounding circumstances. The wireless communication interface for the transmission of data is designed with BLE (Bluetooth Low Energy). BLE is highly adequate wireless communication technology for low power consumption and short distance wireless communication. The main application of BLE is beacon whose usage range is extended from O2O (Online to Offline) service, navigator based on indoor positioning technology, and anti-theft/lost child prevention service to mobile game. This paper studied the method to extend wireless coverage for complementing the short wireless transmission distance of BLE. The wireless sensor network based on CATV network is proposed for the easy construction of BLE sensor network and extended wireless coverage.

Implementation of Greenhouse Environment Monitoring System based on Wireless Sensor Networks (무선센서네트워크 기반 온실환경 모니터링 시스템 구현)

  • Lee, Young-Dong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.11
    • /
    • pp.2686-2692
    • /
    • 2013
  • In this paper, various growth environment data collecting and monitoring based on wireless sensor network for greenhouse environmental monitoring system is designed and implemented. In addition, greenhouse control system is proposed to integrated control and management in internal environment and greenhouse facilities. The system provides real-time remote greenhouse integrated management service which collects greenhouse environment information and controls greenhouse facilities based on wireless sensor network. Graphical user interface for an integrated management system is designed based on the HMI and the experimental results show that the sensor data were collected by integrated management in real-time.

Development of an Agricultural Data Middleware to Integrate Multiple Sensor Networks for an Farm Environment Monitoring System

  • Kim, Joonyong;Lee, Chungu;Kwon, Tae-Hyung;Park, Geonhwan;Rhee, Joong-Yong
    • Journal of Biosystems Engineering
    • /
    • v.38 no.1
    • /
    • pp.25-32
    • /
    • 2013
  • Purpose: The objective of this study is to develop a data middleware for u-IT convergence in agricultural environment monitoring, which can support non-standard data interfaces and solve the compatibility problems of heterogenous sensor networks. Methods: Six factors with three different interfaces were chosen as target data among the environmental monitoring factors for crop cultivation. PostgresSQL and PostGIS were used for database and the data middleware was implemented by Python programming language. Based on hierarchical model design and key-value type table design, the data middleware was developed. For evaluation, 2,000 records of each data access interface were prepared. Results: Their execution times of File I/O interface, SQL interface and HTTP interface were 0.00951 s/record, 0.01967 s/record and 0.0401 s/record respectively. And there was no data loss. Conclusions: The data middleware integrated three heterogenous sensor networks with different data access interfaces.

Study on Wireless Control of a Board Robot Using an IMU sensor (IMU센서를 이용한 보드로봇의 무선제어 연구)

  • Ryu, Jaemyung;Kim, Dong Hun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.2
    • /
    • pp.186-192
    • /
    • 2014
  • This study presents the remote control of a board robot using an IMU sensor based on Bluetooth communication. The board robot is a kind of riding robot controlled throng wireless communication by a user. The user wears the proposed IMU sensor controller, and changes a direction of the robot by the angles of IMU sensor. Bluetooth is used for wireless communication between the board robot and its user. The IMU sensor in the remote controller is used for recognition of a number of actions, which are measured as analog signals. The user actions have five commands ('1'right '2'neutrality '3'left '4'operation '5'stop), which are transmitted from the user to the board robot through Bluetooth communication. Experimental results show that proposed IMU interface can effectively control the board robot.

A Design of Wireless Sensor Network Based on ZigBee Technology in Petrochemical Industry

  • Huang, Song;Zhou, Qingsen;Zhang, Ke;Suh, Hee-Jong
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.27-28
    • /
    • 2007
  • In this paper, the Wireless Sensor Network (WSN) based on ZigBee technology was devised and developed. Wireless communication was applied to petrochemical domain, like other industries. And sensor network of IEEE 802.15.4 protocol stack diagram was described. Then, by analyzing the protocol, the software systems included the communication Protocol and point-to-point network were implemented with Freescale Semiconductor's product MC13192-SARD DSK board. After that, the performance of this design system was evaluated, and finally, by using PC Graphic User Interface (GUI) and IDE CW08 V3.1 programming tool, the real time communication data and the curve function were displayed.

  • PDF

Interface Development for the Point-of-care device based on SOPC

  • Son, Hong-Bum;Song, Sung-Gun;Jung, Jae-Wook;Lee, Chang-Su;Park, Seong-Mo
    • Journal of Information Processing Systems
    • /
    • v.3 no.1
    • /
    • pp.16-20
    • /
    • 2007
  • This paper describes the development of the sensor interface and driver program for a point of care (POC) device. The proposed pac device comprises an ARM9 embedded processor and eight-channel sensor input to measure various bio-signals. It features a user-friendly interface using a full-color TFT-LCD and touch-screen, and a bluetooth wireless communication module. The proposed device is based on the system on a programmable chip (SOPC). We use Altera's Excalibur device, which has an ARM9 and FPGA area on a chip, as a test bed for the development of interface hardware and driver software.

RSSI-based Indoor Location Tracking System using Wireless Sensor Networks (무선 센서 네트워크를 이용한 RSSI 기반의 실내 위치 추적 시스템)

  • Jung, Kyung-Kwon;Park, Hyun-Sik;Choi, Woo-Seung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.7
    • /
    • pp.67-73
    • /
    • 2008
  • This paper describes a system for location tracking wireless sensor nodes in an indoor environment. The sensor reading used for the location estimation is the received signal strength indication (RSSI) as given by an RF interface. By tagging users with a mobile node and deploying a number of reference nodes at fixed position in the room, the received signal strength indicator can be used to determine the position of tagged users. The system combines Euclidean distance technique with signal strength obtained by measurement driven log-normal path loss model of 2.4 GHz wireless channel. The experimental results demonstrated the ability of this system to estimate the location with a error less than 1.3m.

  • PDF

Developing Trend of an Adaptive Mobile Terminal in Ubiquitous Sensor Network Environments (USN 환경에서 적응형 이동 단말의 개발 동향)

  • Lee, Hyun-Jae;Oh, Chang-Heon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.1027-1030
    • /
    • 2005
  • The article introduces developing trends of an adaptive mobile terminal as an interface for use of various network resources, such as public wireless networks and un-licensed wireless networks in ubiquitous sensor network environments, without troublesome settings or operations by users. These adaptive mobile terminals able to provide seamless services that adapt autonomously to the user's movements and changes in the state of wireless resources. Consequently, adaptive mobile terminals should be had respective independent hardware structure of usable wireless networks.

  • PDF

MHP: Master-Handoff Protocol for Fast and Energy-Efficient Data Transfer over SPI in Wireless Sensing Systems

  • Yoo, Seung-Mok;Chou, Pai H.
    • ETRI Journal
    • /
    • v.34 no.4
    • /
    • pp.553-563
    • /
    • 2012
  • Serial peripheral interface (SPI) has been identified as a bottleneck in many wireless sensing systems today. SPI is used almost universally as the physical connection between the microcontroller unit (MCU) and radios, storage devices, and many types of sensors. Virtually all wireless sensor nodes today perform up to twice as many bus transactions as necessary to transfer a given piece of data, as an MCU must serve as the bus master in all transactions. To eliminate this bottleneck, we propose the master-handoff protocol. After the MCU initiates reading from the source slave device and writing to the sink slave device, the MCU as a master becomes a slave, and either the source or the sink slave becomes the temporary master. Experiment results show that this master-handoff technique not only cuts the data transfer time in half, but, more importantly, also enables a superlinear energy reduction.