
Serial peripheral interface (SPI) has been identified as a
bottleneck in many wireless sensing systems today. SPI is
used almost universally as the physical connection
between the microcontroller unit (MCU) and radios,
storage devices, and many types of sensors. Virtually all
wireless sensor nodes today perform up to twice as many
bus transactions as necessary to transfer a given piece of
data, as an MCU must serve as the bus master in all
transactions. To eliminate this bottleneck, we propose the
master-handoff protocol. After the MCU initiates reading
from the source slave device and writing to the sink slave
device, the MCU as a master becomes a slave, and either
the source or the sink slave becomes the temporary master.
Experiment results show that this master-handoff
technique not only cuts the data transfer time in half, but,
more importantly, also enables a superlinear energy
reduction.

Keywords: Energy efficiency, master-slave switch, SPI
bus, wireless sensor network.

Manuscript received Apr. 21, 2011; accepted Feb. 24, 2012.
This work was supported in part by the Dual Use Technology Program (Korea), Information

and Telecommunication National Scholarship (Korea IITA), the National Science Foundation
CAREER Grant CNS-0448668, UC Discovery Grant itl-com05-10154.

Seung-mok Yoo (phone: +82 42 860 5882, yoos@etri.re.kr) is with the IT Convergence
Technology Research Laboratory, ETRI, Daejeon, Rep. of Korea.

Pai H. Chou (phchou@uci.edu) is with the Department of Electrical Engineering and
Computer Science, UC Irvine, USA, and is also with the Department of Computer Science,
Nat’l Tsing Hua University, Hsinchu, Taiwan.

http://dx.doi.rog/10.4218/etrij.12.0111.0209

I. Introduction

Generally, today’s wireless sensor nodes consist of a
microcontroller unit (MCU), a number of sensor devices, a
radio transceiver, and, possibly, a non-volatile storage device
such as flash memory [1]-[9]. A typical program for a sensor
node reads data from a sensing device, performs processing if
necessary, and sends the data to either the RF module or a flash
memory device. Some wireless sensor applications simply
transfer data from a data source (for example, sensors or a
camera) to a data sink (for example, flash memory) in store-and-
forward mode [10]-[12]. For some applications, the total power
consumption exceeds the system power estimate because of the
data transfer overhead [12]. The overhead can seriously affect the
overall performance in such an application. Reducing the
overhead can improve the performance in terms of the application
execution time and energy efficiency.

Many monitoring applications demand high throughput and
lower latency during their active intervals. For example,
structural health monitoring based on acceleration requires
about 500 to 2,000 samples per second per axis [13].
Electrocardiograms (EKG or ECG) require 125 to 1,000
samples per second per channel. Cameras have also been
incorporated into several sensor platforms [2], [11], [14]-[16].
Although local processing can potentially reduce the
bandwidth demand, this is not always possible or sufficient. In
applications such as cameras, the data after compression may
still be relatively large compared to a sporadic sampling of
temperature. These applications can easily demand 50 kbps to
several hundred kbps when active, regardless of their idle

MHP: Master-Handoff Protocol
for Fast and Energy-Efficient Data Transfer

over SPI in Wireless Sensing Systems

Seung-mok Yoo and Pai H. Chou

ETRI Journal, Volume 34, Number 4, August 2012 © 2012 Seung-mok Yoo and Pai H. Chou 553

intervals.
A straightforward implementation of a high-throughput or

low-latency application has a difficult time achieving its
theoretical peak performance. One may be tempted to suggest
direct memory access (DMA) and other similar techniques to
help perform block data transfers. However, such techniques
may not help for several reasons. First, hardware modification
may not be an option if a particular platform must be used.
Second, even if additional hardware can be added, DMA will
only free the MCU from handling the transfer itself, but it will
not remove the bottleneck. Third, the number of serial peripheral
interface (SPI) transactions to transfer data from the data source
to the data sink does not change. We might not expect to see a
significant improvement in energy efficiency from DMA, either.

To understand how a bottleneck occurs in today’s
architecture, it is necessary to understand the interface used by
today’s MCUs, namely SPI, which works in a master/slave
manner. SPI is used as the primary physical interface between
the RF module and the MCU in virtually all sensor nodes today.
SPI is commonly used for a sensor/ADC-to-MCU or MCU-to-
storage interface as well.

Researchers have pointed out that SPI creates a bottleneck in
the system [12]. However, SPI itself is not problematic. It’s the
way SPI is used that is the problem. As a master/slave protocol,
SPI by default incurs two separate bus transactions for each
piece of sensor data. One transaction is used for the MCU to
read from the data source (for example, sensors and flash
memory), and the other is used to write the data to a data sink
(for example, an RF module or storage device). The reasons for
the MCU’s involvement may be to packetize the data, perform
signal conditioning, compression, or event detection, or any
combination thereof. However, the MCU need not always be
involved because specialized hardware may already be
handling the processing or the data may have already been
processed. Even if the MCU must be involved for purposes
such as maintaining buffered data for retransmission if the
packet is lost, using two serialized transactions adds
unnecessary latency because, strictly speaking, the data sink
has no data dependency on the MCU. Doubling the number of
bus transactions caps the throughput to at most 50% of the
throughput as the theoretical maximum, and the latency is at
least twice the minimum latency. In both cases, such a design
can achieve at most half the data transfer performance and at
least double the energy consumption.

To overcome this artificial barrier to high throughput and low
latency, we propose a new scheme called the master-handoff
protocol (MHP) for bus transactions. According to previous
work, the source-to-MCU and MCU-to-sink transactions are
serialized because the MCU has to act as a bus master in both
cases. In our scheme, the MCU as the master first sets up the

transactions for both slaves. Second, the MCU hands off its
master role to either the data source or data sink, which
temporarily becomes a new master for the payload transfer. At
the same time, the MCU has the option of snooping the bus as
a slave, allowing it to keep a copy of the data for retransmission
if necessary. Third, the new master hands the master role back
to the MCU, allowing the MCU to complete the remaining bus
transaction.

By eliminating the artificial serialization requirements, the
MHP doubles the throughput and halves the latency on the
system bus. As a result, energy consumption is reduced, not
only because the MHP reduces the number of SPI transactions,
but also because the reduced bus utilization makes available
more power management opportunities. Another important
advantage is that, without hardware modifications, this
technique is applicable to not only virtually all existing wireless
sensor platforms but also to embedded systems in general that
transfer data from a data source to a data sink over SPI.
Experiment results show that our technique achieves 173%
throughput improvement, 64% latency improvement, and 64%
energy improvement when the MHP is applied to an SPI data
transfer from the data source to the data sink.

The remainder of this paper is organized as follows. Section
II provides an overview of SPI and describes wireless sensor
platforms. Section III describes our proposed MHP in detail.
Section IV describes our implementation and presents the
experiment results at both the system level and wireless, end-
to-end level.

II. Related work

1. SPI Bus Transactions

SPI is a serial interface proposed by Motorola for
synchronous communication between a processor and
peripheral devices or between processors. SPI is commonly
used for both off-chip and on-chip communications in many
embedded systems today.

SPI can be expanded to a bus, which consists of three bus
wires plus a separate slave select. The three bus wires connect
to the SPI clock (SCK), master out slave in (MOSI), and
master in slave out (MISO). The master is responsible for
generating the SCK, and it must also assert a separate slave
select (SS) signal to select the slave device during a bus
transaction [17]. Each SPI controller contains a shift register,
and the master-slave registers form a loop during a bus
transaction. On each SCK pulse, the master and selected slave
exchange one bit of data: the master shifts one bit to the slave
through the MOSI line, and the slave also shifts one bit to the
master through the MISO line. The granularity of an SPI

554 Seung-mok Yoo and Pai H. Chou ETRI Journal, Volume 34, Number 4, August 2012

transaction is a byte, and an SS signal should be asserted
throughout the transaction.

2. Wireless Sensor Platforms

Many wireless sensor platforms developed to date use SPI.
This section reviews Berkeley motes, Eco, PASTA stack, RISE
– Co-S, Stack, TinyNode, and XYZ as representative examples.

The MICA series and Telos series [3], [9], [18], [19] are
generally referred to as Berkeley motes and follow the two-SPI
topology. In both architectures, the external memory and radio
transceivers are connected to the MCU via SPI. However, the
difference is that the MICA series uses two separate SPI
connections for the flash and RF, whereas the Telos series uses
a shared-bus topology instead. In MICA, the only way to
transfer data from one SPI device to the other is for the MCU
to read data from one SPI bus and to write to the other SPI bus.
In Telos, it is assumed that at most one SS is asserted at a time
for devices on the same SPI bus. Neither Berkeley mote
supports SPI on the expansion connector, even though it would
be easy to add more SPI devices to the motes.

The Eco wireless sensor node [8] also uses SPI for both on-
chip and on-board connections with peripherals. Eco uses the
Nordic nRF24E1 MCU, which contains an 8051 MCU core
and an nRF2401 radio transceiver. The MCU accesses the
radio transceiver through an internal SPI in a point-to-point
topology. The external SPI is used for connecting to the
external EEPROM and an additional external SPI device,
which can be connected via its 16-pin flexible-PCB expansion
interface. The SPI controller on the nRF24E1 is hardwired to
work as a master. The only way to transfer data between one
SPI device and the RF is for the MCU to explicitly copy data.
However, it is possible to add another SPI device to the
expansion interface. In this case, the added SPI device can
communicate with the EEPROM over SPI.

The PASTA stack [12] is different from other wireless sensor
platforms in terms of the philosophy and the platform
capability. The PASTA stack is a distributed system, whereas
other wireless sensor platforms are processor-centric systems.
Each module in the stack has a low-power MCU that manages
a power switch and controls the external bus access. The
external bus contains two separate SPIs. MCUs on the modules
can negotiate to use the SPIs. Any module can transfer data
among other modules through the bus.

RISE – Co-S [20] consists of two platforms. The RISE
platform contains an 8051MCU core and an RF transceiver.
The platform has an SPI bus interface. Devices such as the
RISE storage board can be connected through the interface.
The Co-S platform is a co-processing system connected to the
RISE platform over a serial interface. Co-S has two serial

interfaces that can be configured as SPI ports. Any device can
be connected to both of the platforms through SPI.

The MIT Stack platform [2] has an SPI port on the
expansion connector on the board. The flash memory is
connected through the SPI port. Stack also has an RF
transceiver. If SPI devices are connected to the expansion
connector, the devices can communicate with the flash
memory over SPI.

TinyNode [4], [21] has two SPI ports [22]. Similar to Telos,
TinyNode also uses a shared bus topology for connecting its
flash memory and RF through one SPI port, which is not
exposed to the expansion connector. The other SPI port is
connected to the expansion connector on the board. SPI
devices connected to the other SPI port can communicate over
this SPI port. However, it is not easy to transfer data between
an SPI device on the first SPI port and another SPI device on
the other SPI port.

The XYZ sensor node [6] has one SPI port. The RF
transceiver is connected to the MCU through the SPI. The
XYZ node has an expansion connector, but the SPI is not part
of the expansion connector. It is not easy to add another SPI
device to the platform.

If a platform has an expansion connector that contains pins
for an SPI bus, it is called SPI-expandable, and we can apply
MHP to devices on the same SPI bus. Eco, PASTA stack, RISE
– Co-S, Stack, and TinyNode are known to be SPI-expandable.

III. MHP

The purpose of the MHP is to enable a data transfer from the
data source (for example, sensor or data storage) to the data
sink (for example, RF transceiver or flash memory) without
incurring double transactions. Because both the source and the
sink are SPI slave devices, the MCU must initiate a setup with
both devices. The MCU then hands off its master role to either
the source or the sink, which becomes an SPI master
temporarily so that it can perform a direct transfer. Upon
completion of the data transfer, the temporary master hands
over the master role back to the MCU as before.

1. Bus Connection

The MHP requires SPI devices to form a bus topology,
which is shown in Fig. 1. Another requirement is that the MCU
and one of the slaves involved in the handoff must be
configurable as either a master or a slave of the SPI bus
dynamically. When the slave and the master change roles, their
pin directions should be reconfigured, too. Specifically, on the
MCU, the SS, MOSI, and SCK pins should be set to input, and
the MISO pin should be set to output. On the temporary

ETRI Journal, Volume 34, Number 4, August 2012 Seung-mok Yoo and Pai H. Chou 555

Fig. 1. Abstract SPI bus for MHP.

Master ...

MISO
MOSI
SCK

SS

Slave 1

SS

Slave N

SS Addr Addr Addr

Table 1. Primitives for MHP.

Primitives Parameters Descriptions

Read variable
Read a variable

(MCU source or sink)

Write variable, value
Update a variable

(MCU source or sink)

SwitchToTX SinkAddr
Make data source master

(MCU source)

SwitchToRX SourceAddr
Make data sink master

(MCU sink)

SwitchBack none
Hands back master role
(temp master MCU)

master, the MOSI, SCK, and address pins should be set to
output, and the MISO pin should be set to input. The
temporary master should drive the SCK line.

2. Variables for MHP

The data source and data sink have variables, which are used
for configuring the MHP. SPIConfig contains the SCK speed,
clock polarity, clock phase, and bit order configurations.
PayloadSize represents the length of the sense data from the
data source to the data sink in one SPI transaction.

3. Protocol

When the master starts an SPI transaction, it selects a slave
by asserting the SS of the slave. Since the SS is an active low
signal, “asserting” means setting it to a low voltage. If the slave
receives the first byte of the SPI transaction, it invokes a
function to interpret the byte, which contains a primitive, as
shown in Table 1. Only the current acting master can send the
primitives to its slaves.

Variables are accessible by the Read and Write primitives.
Read takes a variable name as an argument. The master

combines Read and a variable name to make a command, and
sends the command to a slave. When the slave receives the
Read primitive, it extracts a variable name from the command.
For example, when the master wants to get the value of a
variable, named PayloadSize, of the data source, the master
sends the Read(PayloadSize) command to that data source.
Depending on the variables, the length of the return value can
be different. The names and data lengths of the variables are
predefined on all SPI nodes. Similarly, Write also takes a
variable name and its value as arguments. Upon receiving a
Write primitive, the slave extracts the variable name and waits
for the value from the master. This is because SPI can send
only one byte at a time. If the slave receives the value, it
updates the variable.

SwitchToTX, SwitchToRX, and SwitchBack are for the master
and slave to switch roles. SwitchToTX is for the data source to
become a temporary master. Upon receiving the SwitchToTX
(SinkAddr) command from the MCU, the data source extracts
a data sink address from the command and changes its role to
master. After the data transfer is completed, it sends
SwitchBack to the MCU and changes its role back to slave. In
the meantime, the MCU waits until it receives the SwitchBack
command and becomes a master again. SwitchToRX is for the
data sink to become a temporary master. Similarly, if the data
sink receives the SwitchToRX(SourceAddr) command from the
MCU, it extracts a data source address from the command and
becomes the master. After it receives data from the data source,
it sends the SwitchBack command to the MCU and changes its
role back to slave.

Figure 2 shows an example of a data transfer using the MHP.
The MCU starts a data transfer by sending SwitchToTX to the
data source. After sending SwitchToTX, the MCU becomes a
slave. The data source becomes the temporary master and
transfers data to the data sink. If the number of bytes sent is
equal to PayloadSize, the data source sends SwitchBack to the

Fig. 2. Example of data transfer using MHP; data source becomes
temporary master during data transfer.

MCU

Write (SPIConfig, value)

Write (PayloadSize, value)

SwitchToTX(SinkAddr)

Data

SwitchBack

Source Sink

…

Configuration

Master
handoff
period

Data
transfer

Time

556 Seung-mok Yoo and Pai H. Chou ETRI Journal, Volume 34, Number 4, August 2012

MCU and becomes a slave. Upon receiving SwitchBack, the
MCU becomes the master and the data transfer ends.

4. Snooping the SPI bus

The MHP supports an option for the MCU to snoop the SPI
bus while it is acting as a slave device during the source-to-sink
transfer. The reason for this option is that the MCU is often
responsible for managing the communication protocol. In case
of a packet loss, the MCU will need to transmit another copy of
the data. By snooping the bus, the MCU can also obtain a copy
of the sensor data “for free,” without incurring additional bus
transactions.

To accomplish snooping, the SPI pin configuration on the
MCU should be different from the conventional
configuration (Fig. 3). On virtually all MCUs, SPI pins are
configurable as GPIO ports by default [17], [22]. When the
software enables SPI, these pins are then connected to the SPI
port. However, the pin directions are not automatically
configured, because they are dependent on the role of SPI. As
a slave, the MOSI, SCK, and SS pins are supposed to be set
to input, while the MISO is set to output. The pin directions
should be configured in the software. For snooping the SPI
bus, we must make the MCU a half-duplex device, since the
conventional pin configuration as a full-duplex device would
result in a bus conflict on the MISO wire. This can be solved
in several ways. In general, each SPI pin is connected to an
internal bi-directional port with an optional internal pull-up
register [17]. There is also a tri-state between the pin and the
internal port. By setting the tri-state on the MCU’s MISO pin
to high impedance, the pin can be disabled, when the MCU is
in slave mode. If the MISO pin of the MCU supports an
open-drain output (that is, a logical 1 indicates a
disconnection from the external resistive pull-up, while a
logical 0 indicates a real 0), then the MCU can write a 0xff
byte after it receives each byte to accomplish the same effect
as a high-impedance output.

IV. Performance Evaluation

1. Application and Assumptions

We test the MHP on a suite of wireless sensing applications
that demand high throughput and low latency during active
intervals. ECG-type applications typically demand 125 to
1,000 samples per second per channel. The camera module in
[16] supports VGA and QVGA resolutions. The MCU on the
platform can receive 4.1 frames per second from the camera at
QVGA resolution. To transmit such a video image to the base
station in real time, the data rate will need to exceed 250 kbps.

Fig. 3. Block diagram for snooping SPI bus.

MCU
(slave)

MISO

SS

Source
(master)

SS1

Sink
(slave)

SSSS2

MOSI MISO MOSI MISOMOSI

SCK SCKSCK

Across all of these applications, the required throughput ranges
from 50 kbps to 100 kbps.

When data is transferred, either a data source or data sink can
be a temporary master. No matter which one becomes the
temporary master, the number of SPI transactions does not
change. For a performance evaluation, we choose the data
source as the temporary master without loss of generality.

2. Data Transfer Performance on SPI

A. Configuration for the Experiment

For the MHP performance evaluation, we implement two
different versions of a data transfer application and compare the
experiment results. To transfer the data, one version uses a
baseline (no-MHP) approach and the other uses the MHP.
Except for their data transfer approaches, the versions are
almost identical. For the baseline approach, the MCU receives
data from the data source and sends the data to the data sink.
However, the data source cannot spontaneously send sensor
data to the MCU through the SPI bus unless the master
activates the SPI data transfer. There are two ways that the
slave sends data to the master. One is that the master waits for a
predefined time and reads the SPI data register on the slave.
The other one is that the slave uses one extra signal line. We
use the latter one. Even if the latter one needs one more extra
signal line, it may be faster than the first one. We refer to the
extra signal as DataReady. If the data source receives a
command to load data to the SPI data register, the data source
loads the data and sets DataReady to high. If the data on the
data source is transferred, the data source sets DataReady to
low. The baseline approach uses the SPI bus and an I/O signal
for DataReady, whereas the MHP approach uses only the SPI
bus.

MCU: For our experimental platform, we use Atmel’s AVR
Butterfly, a wearable, multi-sensor platform based on the
ATMega169V [23]. We set one up as the sensor node and one
as the data source. The ATMega169V, an AVR 8-bit RISC
MCU [17], runs at up to 8 MHz. The processor core without

ETRI Journal, Volume 34, Number 4, August 2012 Seung-mok Yoo and Pai H. Chou 557

Fig. 4. nRF24L01 RF transceiver packet format.

addr payload CRC

5 bytes 1 to 32 bytes 2 bytes

preamble

1 byte

Fig. 5. Block diagram for experimental setup from source.

Sensor
(source)

RF
(sink) MCU

Sensor node

SPI
2 MHz

peripherals on the MCU is equivalent to the core on the
ATMega128L, which is the MCU on MICA2 [3]. The
ATMega169V MCU is thus representative of many wireless
sensor platforms today. The MCU is configured as the bus
master for the experiment.

Data Source: We set up a second AVR board as the bus
interface to a high-speed data source. Conceptually, the data
source has a similar structure to the ADC module of the
PASTA stack, which has an 8051 MCU operating in store-and-
forward mode on the module [12]. If the data source becomes a
temporary master, the data source should know the SCK speed,
polarity, and phase, as well as the bit order. The SPI
configuration information is stored in the SPIConfig variable
and given at the configuration stage by the MCU.

Data Sink: For the data sink, we set up one Nordic
nRF24L01 RF transceiver module, which uses the 2.4 GHz to
2.527 GHz ISM band [24]. Figure 4 shows the packet format.
The packet starts with one byte preamble, which is
automatically added by the RF transceiver. The address length
is configurable from 3 bytes to 5 bytes. We use a 5-byte
address. The payload size in the nRF24L01 packet is
configurable from 1 to 32 bytes. We measure the latency and
throughput with a payload size of 4 to 32 bytes in 4-byte
increments. A 16-bit CRC is added and checked by the RF
transceiver. The transceiver has an SPI port on it. The SPI port
is handled in hardware. Thus, SPI data can be sent and received
without a time delay between consecutive bytes.

For our experiment, the SCK rate is set to 2 MHz (Fig. 5),
the maximum rate achievable by the AVR boards.
Theoretically, a 2 MHz clock can transmit data at 250 kbps.
This clock rate is fast enough to handle both a 2.4 GHz
802.15.4/Zigbee data rate [25] and the Nordic transceiver.

Fig. 6. Latency comparison.

0 4 8 12 16 20 24 28 32

Payload (byte)

1,000

800

600

400

200

0

Ti
m

e
(µ

s)

MHP
Baseline

Fig. 7. MHP latency improvement over baseline.

0 4 8 12 16 20 24 28 32
Payload (byte)

70

60

50

40

30

20

Pe
rc

en
ta

ge
 (%

)

B. Latency and Throughput

The latency and throughput for the baseline are measured
from the start of the data source access to the completion of the
data transfer to the data sink on the MCU. The latency and
throughput for the MHP are measured from the SwitchToTX
transmission to the SwitchBack arrival on the MCU. Figure 6
compares the two latency measurements. When the payload
size is 4 bytes, we observe a latency of 152 μs for the baseline,
and 117 μs for MHP. The difference is 35 μs. As the payload
size increases, both curves grow linearly as does the latency
difference. At the maximum payload size of 32 bytes, the
latency of the baseline is 802 μs versus MHP’s 291 μs. Figure
7 shows the MHP latency improvement against the baseline.
When the payload size is 32 bytes, the latency improvement is
64%. If the data size is greater than or equal to 12 bytes, the
latency improvement is greater than 50%. In other words, if the
size of data transferred is greater than or equal to 12 bytes, the
MHP latency is less than half of the baseline latency. If the
payload size is greater than or equal to 24 bytes, the

558 Seung-mok Yoo and Pai H. Chou ETRI Journal, Volume 34, Number 4, August 2012

Fig. 8. Throughput comparison.

0 4 8 12 16 20 24 28 32
Payload (byte)

1,000

800

600

400

200

0

Th
ro

ug
hp

ut
 (k

bp
s)

MHP

Baseline

Fig. 9. MHP throughput improvement over baseline.

0 4 8 12 16 20 24 28 32
Payload (byte)

200

150

100

50

0

Pe
rc

en
ta

ge
 (%

)

improvement is greater than 60%, and the improvement curve
becomes stable. To increase the latency performance, it is more
efficient to send more than 24 bytes of data at a time.

Figure 8 shows the measured throughput comparison. At a
payload size of 4 bytes, the baseline throughput is 211 kbps
versus MHP’s 274 kbps, with a difference of 63 kbps. As the
payload size grows, the difference also grows. At the maximum
payload of 32 bytes, the throughput of the baseline is 319 kbps
versus MHP’s 880 kbps. The difference is 561 kbps. Figure 9
shows the MHP throughput improvement. If the payload size is
greater than or equal to 12 bytes, the MHP throughput
improvement is greater than 100%. When the payload size is 32
bytes, the throughput improvement is 176% compared to the
throughput of the baseline. Unlike the latency improvement
curve, the throughput improvement curve steadily grows up to
32 bytes, although the growth rate goes down.

The super-linear improvement in latency and throughput is
due to the fact that SPI transactions between the MCU and the
data source take a longer time than those between the MCU
and the data sink. This is because the RF transceiver handles

Fig. 10. Energy consumption comparison.

0 4 8 12 16 20 24 28 32
Payload (byte)

30

25

15

5

0

En
er

gy
 c

on
su

m
pt

io
n

(µ
J)

20

10

MHP

Baseline

Fig. 11. MHP energy consumption improvement over baseline.

0 4 8 12 16 20 24 28 32
Payload (byte)

70

60

30

20

Pe
rc

en
ta

ge
 (%

)

50

40

SPI data in hardware, whereas on the MCU, software needs to
access the SPI hardware register, and this takes more time.
Another difference is that in the MHP, the MCU and data
source communicate with each other during the role change
period. By our measurement, it takes 12 μs for the data source
to become a master after the start of the transaction. This is a
negligibly small number in terms of the SPI transaction time.
Thus, the baseline latency is more than twice the MHP latency,
and the baseline throughput is less than half of the MHP
throughput.

C. Energy Consumption

Energy efficiency is one of the important issues in wireless
sensor network applications. Figure 10 shows the measured
energy consumptions during one data transfer transaction from
the source to the sink. For the baseline, the energy consumption
is measured for two SPI transactions: one transaction from the
source to the MCU and the other transaction from the MCU to
the sink. For the MHP, the energy consumption is measured for
only one SPI transaction from the source to the sink. When

ETRI Journal, Volume 34, Number 4, August 2012 Seung-mok Yoo and Pai H. Chou 559

Fig. 12. Block diagram for experimental setup from source to
base station.

 Sensor
(source) RF MCU

Sensor node

RF

MCU
(sink)

Base station

SPI
2 MHz

RF
1 Mbps

the payload size is 4 bytes, the energy consumed is 3.46 μJ for
the MHP and 4.58 μJ for the baseline. The difference is 1.12 μJ.
At the maximum payload size, the energy consumption for the
MHP is 8.61 μJ and the energy consumption for the baseline is
24.23 μJ. The difference is 15.62 μJ. Like the latency and
throughput graphs, the energy consumption graph grows
linearly. Figure 11 shows the MHP energy consumption
improvement on the SPI data transfer. The energy consumption
of the MHP is 76% of that of the baseline at a payload size of 4
bytes. At the maximum payload size, the energy consumption
of the MHP is 36% that of the baseline. This is a 64%
improvement in energy consumption.

The shape of the curve in Fig. 11 is quite similar to that of the
curve in Fig 7. This is because the power consumption of both
approaches is nearly identical and the energy consumption
depends on the latency. If the data size is greater than or equal
to 12 bytes, the latency improvement is greater than 50%. If the
payload size is greater than or equal to 24 bytes, the
improvement is greater than 60% and the improvement curve
becomes stable. Like the latency, it is more efficient to send
more than 24 bytes of data at a time.

3. Source to Base Station Performance

Localized improvements may not lead to global, end-to-end
improvements due to Amdahl’s Law. This section presents
measurement results that quantify the impact of the MHP, an
on-board bus protocol, on the global performance of a data
transaction from a sensor on the wireless sensor node to the
base station. Our metrics are the throughput, data transfer time,
which is the time difference from the start of the i-th packet
transmission to the start of the (i+1)th packet transmission, and
energy consumption for the data transfer time. The (i+1)th
transmission starts once the i-th transmission completely ends.

A. Configuration for the Experiment

We configure one additional node for a base station to
evaluate the system-wise performance. The base station has a
similar configuration as the sensor node. It uses the same AVR

Fig. 13. Data transfer time comparison.

0 4 8 12 16 20 24 28 32
Payload (byte)

1,600

1,400

400

0

Ti
m

e
(µ

s)
 1,000

800

1,200

600

200

Reference

MHP

Baseline

Fig. 14. MHP data transfer time improvement over baseline.

0 4 8 12 16 20 24 28 32
Payload (byte)

10

Pe
rc

en
ta

ge
 (%

)

50

30

20

40

board and nRF24L01 RF transceiver module, but its sensors
are not used. Data from the sensor node to the base station is
transferred through the transceiver at 1 Mbps in air (Fig. 12).

B. Data Transfer Time and Throughput

Figure 13 shows the data transfer time measurements from
the data source to the base station. A reference in this case
involves the MCU, which continuously transmits dummy data
over the RF transceiver to the base station, without any sensor
data. The reference can be a lower bound of the data transfer
time. At 4 bytes of payload, the data transfer time of the
baseline approach (double-transaction) is 388 μs versus MHP’s
328 μs, with a difference of 60 μs. As the payload size
increases, all three curves grow linearly. At a maximum
payload size of 32 bytes, the data transfer time of the baseline is
1,260 μs versus MHP’s 728 μs, or a 532 μs difference. If the
data transfer time for the MHP is compared to the reference,
the reference time is 308 μs at 4 bytes of payload and 640 μs at
the maximum payload size. The difference is 20 μs and 88 μs,
respectively. The data transfer time for the MHP takes 114% of

560 Seung-mok Yoo and Pai H. Chou ETRI Journal, Volume 34, Number 4, August 2012

Fig. 15. Throughput comparison.

0 4 8 12 16 20 24 28 32
Payload (byte)

0

Th
ro

ug
hp

ut
 (k

bp
s)

500

300

200

400

100

Reference

MHP

Baseline

Fig. 16. MHP throughput improvement over baseline.

0 4 8 12 16 20 24 28 32
Payload (byte)

10

Pe
rc

en
ta

ge
 (%

)

90

50

30

70

the data transfer time for the reference, whereas the data
transfer time for the baseline takes 197% of the data transfer
time for the reference at the maximum payload size.

Figure 15 shows a throughput comparison of the two
approaches plotted against the sensorless reference. At a
payload size of 4 bytes, the baseline throughput is 82 kbps
compared to MHP’s 98 kbps, with a difference of 15 kbps. As
the payload size grows, the difference also grows. At a
maximum payload size of 32 bytes, the baseline throughput is
203 kbps versus MHP’s 352 kbps; this difference is 149 kbps.
The throughput of the reference is 104 kbps at a payload size of
4 bytes and 400 kbps at the maximum payload size. The MHP
throughput is 94% of the reference throughput at a payload size
of 4 bytes and 88% of the reference throughput at the
maximum payload size. The baseline throughput is 79% of the
reference throughput at a payload size of 4 bytes and 51% of
the reference throughput at the maximum payload size. Given
that the throughput requirement for one camera application
exceeds 256 kbps, the MHP is the only way that the system can
meet the requirement without a hardware modification.

Figures 14 and 16 show the MHP improvements over the
baseline. When the payload size is 20 bytes, both improvement
curves slowly grow. At the maximum payload size of 32 bytes,
the MHP data transfer time improvement over the baseline is
42%, which leads to a 73% throughput improvement. The
reason there is an improvement at the lower platform-level
over the SPI-level is simply due to Amdahl’s Law: we are not
improving the actual over-the-air transmission time, which
occurs at 1 Mbps compared to SPI’s 2 Mbps. Moreover, the
transceiver itself incurs additional overhead per packet,
including the formation of packet headers and a CRC, and it
transmits a total of 40 bytes for every 32 bytes of payload. The
MHP data transfer time on the node is 728 μs, whereas the
MHP latency for the SPI data transfer is only 291 μs. This is
because 60% of the platform-level latency actually goes into
packetizing the payload and the over-the-air transmission.
However, compared with the sensorless reference, the MHP
achieves 88% of the theoretical maximum, whereas the
baseline achieves 51%. In an MHP transaction, only 12% of
the data transfer time is used for the MHP, while 88% of the
data transfer time is used for wireless communications.

C. Energy Consumption

Figure 17 compares the energy consumption of the two
approaches. The energy consumption is measured on the
sensor node during one data transfer from the data source to the
base station. When the payload size is 4 bytes, the energy
consumed is 9.71 μJ for the MHP and 11.72 μJ for the baseline.
The difference is 2.01 μJ. At the maximum payload size, the
energy consumption is 21.55 μJ for the MHP and 38.05 μJ for
the baseline. The difference is 16.50 μJ. Like the latency and
throughput graphs, the energy consumption graph grows
linearly. A comparison between the MHP energy consumption
rate and the baseline is shown in Fig. 18. The energy
consumption improvement over the baseline is 17% at a
payload size of 4 bytes. When the payload size is 20 bytes, the
energy consumption improvement over the baseline is 39%. At
the maximum payload size, the improvement is 43%. The
shape of the curve is also similar to that of the curve in Fig. 14
as the power consumption of both approaches is similar and
the energy consumption depends on the data transfer time.

The performance of the MHP is better than that of the
baseline in energy efficiency as well. Like the SPI data transfer
case, as the payload size increases, the MHP improvements
regarding data transfer time, throughput, and energy
consumption over the baseline also increase.

V. Conclusion

This paper described the MHP for a fast and energy-efficient

ETRI Journal, Volume 34, Number 4, August 2012 Seung-mok Yoo and Pai H. Chou 561

Fig. 17. Energy consumption.

0 4 8 12 16 20 24 28 32

Payload (byte)

0

En
er

gy
 c

on
su

m
pt

io
n

(µ
J)

50

20

10

30

40

MHP

Baseline

Fig. 18. MHP energy consumption improvement over baseline.

0 4 8 12 16 20 24 28 32
Payload (byte)

10

Pe
rc

en
ta

ge
 (%

)

50

30

20

40

data transfer over SPI in wireless sensor platforms. This
eliminates a well-known bottleneck, namely, the double
transaction problem, which caps the throughput and latency at
half of the theoretical peak performance. Our MHP breaks the
single, fixed bus master assumption in conventional SPI
architectures using a simple, temporary exchange of the
master/slave roles. The protocol is simple to implement, incurs
low overhead, and is applicable to many conventional, low-
cost hardware architectures for sensor networks. It also
eliminates an artificial data dependency on the MCU.
Experiment results show that our implementation achieves
significant improvement in latency (64%), throughput (176%),
and energy consumption (64%), not only locally at the SPI-bus
level, but, more importantly, globally at the end-to-end level,
from a sensor device to the base station (73% and 43%). The
reduced load can make available even more power
management opportunities and time for useful computation, as
well as significantly extend battery life for many emerging
sensing applications.

References

[1] I.F. Akyildiz et al., “A Survey on Sensor Networks,” IEEE
Commun. Mag., vol. 40, no. 8, Aug. 2002. pp. 102-114.

[2] A.Y. Benbasat and J.A. Paradiso, “A Compact Modular Wireless
Sensor Platform,” Proc. IPSN, 2005, pp. 410-415.

[3] Crossbow Technology Inc., “MPR-MIB Users Manual Revision
B,” June 2006.

[4] H. Dubois-Ferrière et al., “Tinynode: A Comprehensive Platform
for Wireless Sensor Network Applications,” Proc. IPSN, 2006, pp.
358-365.

[5] H. Lee et al., “Wearable Personal Network Based on Fabric Serial
Bus Using Electrically Conductive Yarn,” ETRI J., vol. 32, no. 5,
Oct. 2010, pp. 713-721.

[6] D. Lymberopoulos and A. Savvides, “XYZ: A Motion-Enabled,
Power Aware Sensor Node Platform for Distributed Sensor
Network Applications,” Proc. IPSN, 2005, pp. 449-454.

[7] G. Mathur et al., “Ultra-Low Power Data Storage for Sensor
Networks,” Proc. IPSN, 2006, pp. 374-381.

[8] C. Park, J. Liu, and P.H. Chou, “Eco: An Ultra-Compact Low-
Power Wireless Sensor Node for Real-Time Motion Monitoring,”
Proc. IPSN, 2005, pp. 398-403.

[9] J. Polastre, R. Szewczyk, and D. Culler, “Telos: Enabling Ultra-
low Power Wireless Research,” Proc. IPSN, 2005, pp. 364-369.

[10] P. Juang et al., “Energy-Efficient Computing for Wildlife
Tracking: Design Tradeoffs and Early Experiences with
ZebraNet,” SIGOPS Oper. Syst. Rev., vol. 36, 2002, pp. 96-107.

[11] G. Mathur et al., “A Storage-Centric Camera Sensor Network,”
Proc. SenSys, 2006, pp. 337-338.

[12] B. Schott et al., “A Modular Power-Aware Microsensor with
>1000x Dynamic Power Range,” Proc. IPSN, 2005, pp. 469-474.

[13] C. Park, P.H. Chou, and M. Shinozuka, “DuraNode: Wireless
Networked Sensor for Structural Health Monitoring,” Proc. 4th
IEEE Int. Conf. Sensors, Oct. 2005.

[14] S. Hengsteler and H. Aghajan, “Wisnap: A Wireless Image
Sensor Network Application Platform,” Proc. COGnitive
Systems Interactive Sensors, 2006.

[15] M. Rahimi et al., “Cyclops: In Situ Image Sensing and
Interpretation in Wireless Sensor Networks,” Proc. SenSys, 2005,
pp. 192-204.

[16] T. Teixeira et al., “Address-Event Imagers for Sensor Networks:
Evaluation and Modeling,” Proc. IPSN, 2006, pp. 458-466.

[17] ATMel, “8-bit AVR Microcontroller with 16K Bytes In-System
Programmable Flash,” July 2006.

[18] J. Hill and D. Culler, “Mica: A Wireless Platform for Deeply
Embedded Networks,” IEEE Micro, vol. 22, Nov./Dec. 2002, pp.
12-24.

[19] Moteiv Corporation, “Tmote Sky: Datasheet,” Feb. 2006.
[20] A. Banerjee et al., “RISE – Co-S: High Performance Sensor

Storage and Co-Processing Architecture,” Proc. SECON, 2005,

562 Seung-mok Yoo and Pai H. Chou ETRI Journal, Volume 34, Number 4, August 2012

pp. 1-12.
[21] Shockfish SA., “TinyNode User’s Manual,” Rev 1.1, Nov. 2005.
[22] Texas Instruments Inc., “MSP430x15x, MSP430x16x,

MSP430x161x Mixed Signal Microcontroller” Rev. E, Aug. 2006.
[23] ATMel, “AVR Butterfly.” Available: http://www.atmel.com/dyn/

products/tools_card.asp?tool_id=3146
[24] Nordic Semiconductor, Available: http://www.nordicsemi.no/files/

Product/data_sheet/nRF24L01_prelim_prod_spec_1_2.pdf
[25] IEEE Standard Department, “Part 15.4: Wireless Medium Access

Control (MAC) and Physical Layer (PHY) Specifications for
Low Rate Wireless Personal Area Networks (LR-WPANs),”
IEEE Standard for Information Technology, IEEE Std 802.15.4-
2003, IEEE Press, New York, NY, USA, Oct. 2003.

Seung-mok Yoo received his BS and MS in
computer engineering from Kyungpook
National University, Daegu, Rep. of Korea in
1994 and 1996, respectively. He received his
PhD in electrical and computer engineering
from UC Irvine, Irvine, CA, USA, in 2007. He
was a researcher at the Agency for Defense

Development, Rep. of Korea from 1996 to 2001. He is currently a
senior engineer at ETRI, Daejeon, Rep. of Korea. His research interests
include node architecture design, MAC and routing protocol design,
and distributed real time system design and implementation in wireless
sensor networks and embedded systems.

Pai H. Chou is an associate professor in
electrical engineering and computer science at
UC Irvine, Irvine, CA, USA and in computer
science at the National Tsing Hua University,
Hsinchu City, Taiwan. He received his AB in
computer science from UC Berkeley, Berkeley,
CA, USA, in 1990 and his MS and PhD in

computer science and engineering from the University of Washington,
Seattle, WA, USA, in 1993 and 1998, respectively. His research
interests include wireless sensing systems, low-power design, energy
harvesting, and system synthesis. He is a recipient of the NSF
CAREER Award.

ETRI Journal, Volume 34, Number 4, August 2012 Seung-mok Yoo and Pai H. Chou 563

http://en.wikipedia.org/wiki/Hsinchu_City

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

