
Serial peripheral interface (SPI) has been identified as a 
bottleneck in many wireless sensing systems today. SPI is 
used almost universally as the physical connection 
between the microcontroller unit (MCU) and radios, 
storage devices, and many types of sensors. Virtually all 
wireless sensor nodes today perform up to twice as many 
bus transactions as necessary to transfer a given piece of 
data, as an MCU must serve as the bus master in all 
transactions. To eliminate this bottleneck, we propose the 
master-handoff protocol. After the MCU initiates reading 
from the source slave device and writing to the sink slave 
device, the MCU as a master becomes a slave, and either 
the source or the sink slave becomes the temporary master. 
Experiment results show that this master-handoff 
technique not only cuts the data transfer time in half, but, 
more importantly, also enables a superlinear energy 
reduction. 
 

Keywords: Energy efficiency, master-slave switch, SPI 
bus, wireless sensor network. 

                                                               
Manuscript received Apr. 21, 2011; accepted Feb. 24, 2012. 
This work was supported in part by the Dual Use Technology Program (Korea), Information 

and Telecommunication National Scholarship (Korea IITA), the National Science Foundation 
CAREER Grant CNS-0448668, UC Discovery Grant itl-com05-10154. 

Seung-mok Yoo (phone: +82 42 860 5882, yoos@etri.re.kr) is with the IT Convergence 
Technology Research Laboratory, ETRI, Daejeon, Rep. of Korea. 

Pai H. Chou (phchou@uci.edu) is with the Department of Electrical Engineering and 
Computer Science, UC Irvine, USA, and is also with the Department of Computer Science, 
Nat’l Tsing Hua University, Hsinchu, Taiwan. 

http://dx.doi.rog/10.4218/etrij.12.0111.0209 

I. Introduction 

Generally, today’s wireless sensor nodes consist of a 
microcontroller unit (MCU), a number of sensor devices, a 
radio transceiver, and, possibly, a non-volatile storage device 
such as flash memory [1]-[9]. A typical program for a sensor 
node reads data from a sensing device, performs processing if 
necessary, and sends the data to either the RF module or a flash 
memory device. Some wireless sensor applications simply 
transfer data from a data source (for example, sensors or a 
camera) to a data sink (for example, flash memory) in store-and-
forward mode [10]-[12]. For some applications, the total power 
consumption exceeds the system power estimate because of the 
data transfer overhead [12]. The overhead can seriously affect the 
overall performance in such an application. Reducing the 
overhead can improve the performance in terms of the application 
execution time and energy efficiency. 

Many monitoring applications demand high throughput and 
lower latency during their active intervals. For example, 
structural health monitoring based on acceleration requires 
about 500 to 2,000 samples per second per axis [13]. 
Electrocardiograms (EKG or ECG) require 125 to 1,000 
samples per second per channel. Cameras have also been 
incorporated into several sensor platforms [2], [11], [14]-[16]. 
Although local processing can potentially reduce the 
bandwidth demand, this is not always possible or sufficient. In 
applications such as cameras, the data after compression may 
still be relatively large compared to a sporadic sampling of 
temperature. These applications can easily demand 50 kbps to 
several hundred kbps when active, regardless of their idle 
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intervals. 
A straightforward implementation of a high-throughput or 

low-latency application has a difficult time achieving its 
theoretical peak performance. One may be tempted to suggest 
direct memory access (DMA) and other similar techniques to 
help perform block data transfers. However, such techniques 
may not help for several reasons. First, hardware modification 
may not be an option if a particular platform must be used.  
Second, even if additional hardware can be added, DMA will 
only free the MCU from handling the transfer itself, but it will 
not remove the bottleneck. Third, the number of serial peripheral 
interface (SPI) transactions to transfer data from the data source 
to the data sink does not change. We might not expect to see a 
significant improvement in energy efficiency from DMA, either. 

To understand how a bottleneck occurs in today’s 
architecture, it is necessary to understand the interface used by 
today’s MCUs, namely SPI, which works in a master/slave 
manner. SPI is used as the primary physical interface between 
the RF module and the MCU in virtually all sensor nodes today. 
SPI is commonly used for a sensor/ADC-to-MCU or MCU-to-
storage interface as well.  

Researchers have pointed out that SPI creates a bottleneck in 
the system [12]. However, SPI itself is not problematic. It’s the 
way SPI is used that is the problem. As a master/slave protocol, 
SPI by default incurs two separate bus transactions for each 
piece of sensor data. One transaction is used for the MCU to 
read from the data source (for example, sensors and flash 
memory), and the other is used to write the data to a data sink 
(for example, an RF module or storage device). The reasons for 
the MCU’s involvement may be to packetize the data, perform 
signal conditioning, compression, or event detection, or any 
combination thereof. However, the MCU need not always be 
involved because specialized hardware may already be 
handling the processing or the data may have already been 
processed. Even if the MCU must be involved for purposes 
such as maintaining buffered data for retransmission if the 
packet is lost, using two serialized transactions adds 
unnecessary latency because, strictly speaking, the data sink 
has no data dependency on the MCU. Doubling the number of 
bus transactions caps the throughput to at most 50% of the 
throughput as the theoretical maximum, and the latency is at 
least twice the minimum latency. In both cases, such a design 
can achieve at most half the data transfer performance and at 
least double the energy consumption. 

To overcome this artificial barrier to high throughput and low 
latency, we propose a new scheme called the master-handoff 
protocol (MHP) for bus transactions. According to previous 
work, the source-to-MCU and MCU-to-sink transactions are 
serialized because the MCU has to act as a bus master in both 
cases. In our scheme, the MCU as the master first sets up the 

transactions for both slaves. Second, the MCU hands off its 
master role to either the data source or data sink, which 
temporarily becomes a new master for the payload transfer. At 
the same time, the MCU has the option of snooping the bus as 
a slave, allowing it to keep a copy of the data for retransmission 
if necessary. Third, the new master hands the master role back 
to the MCU, allowing the MCU to complete the remaining bus 
transaction. 

By eliminating the artificial serialization requirements, the 
MHP doubles the throughput and halves the latency on the 
system bus. As a result, energy consumption is reduced, not 
only because the MHP reduces the number of SPI transactions, 
but also because the reduced bus utilization makes available 
more power management opportunities. Another important 
advantage is that, without hardware modifications, this 
technique is applicable to not only virtually all existing wireless 
sensor platforms but also to embedded systems in general that 
transfer data from a data source to a data sink over SPI. 
Experiment results show that our technique achieves 173% 
throughput improvement, 64% latency improvement, and 64% 
energy improvement when the MHP is applied to an SPI data 
transfer from the data source to the data sink. 

The remainder of this paper is organized as follows. Section 
II provides an overview of SPI and describes wireless sensor 
platforms. Section III describes our proposed MHP in detail. 
Section IV describes our implementation and presents the 
experiment results at both the system level and wireless, end-
to-end level. 

II. Related work 

1. SPI Bus Transactions 

SPI is a serial interface proposed by Motorola for 
synchronous communication between a processor and 
peripheral devices or between processors. SPI is commonly 
used for both off-chip and on-chip communications in many 
embedded systems today. 

SPI can be expanded to a bus, which consists of three bus 
wires plus a separate slave select. The three bus wires connect 
to the SPI clock (SCK), master out slave in (MOSI), and 
master in slave out (MISO). The master is responsible for 
generating the SCK, and it must also assert a separate slave 
select (SS) signal to select the slave device during a bus 
transaction [17]. Each SPI controller contains a shift register, 
and the master-slave registers form a loop during a bus 
transaction. On each SCK pulse, the master and selected slave 
exchange one bit of data: the master shifts one bit to the slave 
through the MOSI line, and the slave also shifts one bit to the 
master through the MISO line. The granularity of an SPI 
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transaction is a byte, and an SS signal should be asserted 
throughout the transaction. 

2. Wireless Sensor Platforms 

Many wireless sensor platforms developed to date use SPI. 
This section reviews Berkeley motes, Eco, PASTA stack, RISE 
– Co-S, Stack, TinyNode, and XYZ as representative examples. 

The MICA series and Telos series [3], [9], [18], [19] are 
generally referred to as Berkeley motes and follow the two-SPI 
topology. In both architectures, the external memory and radio 
transceivers are connected to the MCU via SPI. However, the 
difference is that the MICA series uses two separate SPI 
connections for the flash and RF, whereas the Telos series uses 
a shared-bus topology instead. In MICA, the only way to 
transfer data from one SPI device to the other is for the MCU 
to read data from one SPI bus and to write to the other SPI bus. 
In Telos, it is assumed that at most one SS is asserted at a time 
for devices on the same SPI bus. Neither Berkeley mote 
supports SPI on the expansion connector, even though it would 
be easy to add more SPI devices to the motes. 

The Eco wireless sensor node [8] also uses SPI for both on-
chip and on-board connections with peripherals. Eco uses the 
Nordic nRF24E1 MCU, which contains an 8051 MCU core 
and an nRF2401 radio transceiver. The MCU accesses the 
radio transceiver through an internal SPI in a point-to-point 
topology. The external SPI is used for connecting to the 
external EEPROM and an additional external SPI device, 
which can be connected via its 16-pin flexible-PCB expansion 
interface. The SPI controller on the nRF24E1 is hardwired to 
work as a master. The only way to transfer data between one 
SPI device and the RF is for the MCU to explicitly copy data. 
However, it is possible to add another SPI device to the 
expansion interface. In this case, the added SPI device can 
communicate with the EEPROM over SPI. 

The PASTA stack [12] is different from other wireless sensor 
platforms in terms of the philosophy and the platform 
capability. The PASTA stack is a distributed system, whereas 
other wireless sensor platforms are processor-centric systems. 
Each module in the stack has a low-power MCU that manages 
a power switch and controls the external bus access. The 
external bus contains two separate SPIs. MCUs on the modules 
can negotiate to use the SPIs. Any module can transfer data 
among other modules through the bus. 

RISE – Co-S [20] consists of two platforms. The RISE 
platform contains an 8051MCU core and an RF transceiver. 
The platform has an SPI bus interface. Devices such as the 
RISE storage board can be connected through the interface. 
The Co-S platform is a co-processing system connected to the 
RISE platform over a serial interface. Co-S has two serial 

interfaces that can be configured as SPI ports. Any device can 
be connected to both of the platforms through SPI. 

The MIT Stack platform [2] has an SPI port on the 
expansion connector on the board. The flash memory is 
connected through the SPI port. Stack also has an RF 
transceiver. If SPI devices are connected to the expansion 
connector, the devices can communicate with the flash 
memory over SPI. 

TinyNode [4], [21] has two SPI ports [22]. Similar to Telos, 
TinyNode also uses a shared bus topology for connecting its 
flash memory and RF through one SPI port, which is not 
exposed to the expansion connector. The other SPI port is 
connected to the expansion connector on the board. SPI 
devices connected to the other SPI port can communicate over 
this SPI port. However, it is not easy to transfer data between 
an SPI device on the first SPI port and another SPI device on 
the other SPI port. 

The XYZ sensor node [6] has one SPI port. The RF 
transceiver is connected to the MCU through the SPI. The 
XYZ node has an expansion connector, but the SPI is not part 
of the expansion connector. It is not easy to add another SPI 
device to the platform. 

If a platform has an expansion connector that contains pins 
for an SPI bus, it is called SPI-expandable, and we can apply 
MHP to devices on the same SPI bus. Eco, PASTA stack, RISE 
– Co-S, Stack, and TinyNode are known to be SPI-expandable. 

III. MHP 

The purpose of the MHP is to enable a data transfer from the 
data source (for example, sensor or data storage) to the data 
sink (for example, RF transceiver or flash memory) without 
incurring double transactions. Because both the source and the 
sink are SPI slave devices, the MCU must initiate a setup with 
both devices. The MCU then hands off its master role to either 
the source or the sink, which becomes an SPI master 
temporarily so that it can perform a direct transfer. Upon 
completion of the data transfer, the temporary master hands 
over the master role back to the MCU as before. 

1. Bus Connection 

The MHP requires SPI devices to form a bus topology, 
which is shown in Fig. 1. Another requirement is that the MCU 
and one of the slaves involved in the handoff must be 
configurable as either a master or a slave of the SPI bus 
dynamically. When the slave and the master change roles, their 
pin directions should be reconfigured, too. Specifically, on the 
MCU, the SS, MOSI, and SCK pins should be set to input, and 
the MISO pin should be set to output. On the temporary  
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Fig. 1. Abstract SPI bus for MHP. 
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Table 1. Primitives for MHP. 

Primitives Parameters Descriptions 

Read variable 
Read a variable 

(MCU  source or sink) 

Write variable, value 
Update a variable 

(MCU  source or sink) 

SwitchToTX SinkAddr 
Make data source master 

(MCU  source) 

SwitchToRX SourceAddr 
Make data sink master 

(MCU  sink) 

SwitchBack none 
Hands back master role 
(temp master  MCU) 

 

 
master, the MOSI, SCK, and address pins should be set to 
output, and the MISO pin should be set to input. The 
temporary master should drive the SCK line. 

2. Variables for MHP 

The data source and data sink have variables, which are used 
for configuring the MHP. SPIConfig contains the SCK speed, 
clock polarity, clock phase, and bit order configurations. 
PayloadSize represents the length of the sense data from the 
data source to the data sink in one SPI transaction. 

3. Protocol 

When the master starts an SPI transaction, it selects a slave 
by asserting the SS of the slave. Since the SS is an active low 
signal, “asserting” means setting it to a low voltage. If the slave 
receives the first byte of the SPI transaction, it invokes a 
function to interpret the byte, which contains a primitive, as 
shown in Table 1. Only the current acting master can send the 
primitives to its slaves. 

Variables are accessible by the Read and Write primitives. 
Read takes a variable name as an argument. The master 

combines Read and a variable name to make a command, and 
sends the command to a slave. When the slave receives the 
Read primitive, it extracts a variable name from the command. 
For example, when the master wants to get the value of a 
variable, named PayloadSize, of the data source, the master 
sends the Read(PayloadSize) command to that data source. 
Depending on the variables, the length of the return value can 
be different. The names and data lengths of the variables are 
predefined on all SPI nodes. Similarly, Write also takes a 
variable name and its value as arguments. Upon receiving a 
Write primitive, the slave extracts the variable name and waits 
for the value from the master. This is because SPI can send 
only one byte at a time. If the slave receives the value, it 
updates the variable. 

SwitchToTX, SwitchToRX, and SwitchBack are for the master 
and slave to switch roles. SwitchToTX is for the data source to 
become a temporary master. Upon receiving the SwitchToTX 
(SinkAddr) command from the MCU, the data source extracts 
a data sink address from the command and changes its role to 
master. After the data transfer is completed, it sends 
SwitchBack to the MCU and changes its role back to slave. In 
the meantime, the MCU waits until it receives the SwitchBack 
command and becomes a master again. SwitchToRX is for the 
data sink to become a temporary master. Similarly, if the data 
sink receives the SwitchToRX(SourceAddr) command from the 
MCU, it extracts a data source address from the command and 
becomes the master. After it receives data from the data source, 
it sends the SwitchBack command to the MCU and changes its 
role back to slave. 

Figure 2 shows an example of a data transfer using the MHP. 
The MCU starts a data transfer by sending SwitchToTX to the 
data source. After sending SwitchToTX, the MCU becomes a 
slave. The data source becomes the temporary master and 
transfers data to the data sink. If the number of bytes sent is 
equal to PayloadSize, the data source sends SwitchBack to the 
 

 

Fig. 2. Example of data transfer using MHP; data source becomes
temporary master during data transfer. 
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MCU and becomes a slave. Upon receiving SwitchBack, the 
MCU becomes the master and the data transfer ends. 

4. Snooping the SPI bus 

The MHP supports an option for the MCU to snoop the SPI 
bus while it is acting as a slave device during the source-to-sink 
transfer. The reason for this option is that the MCU is often 
responsible for managing the communication protocol. In case 
of a packet loss, the MCU will need to transmit another copy of 
the data. By snooping the bus, the MCU can also obtain a copy 
of the sensor data “for free,” without incurring additional bus 
transactions. 

To accomplish snooping, the SPI pin configuration on the 
MCU should be different from the conventional 
configuration (Fig. 3). On virtually all MCUs, SPI pins are 
configurable as GPIO ports by default [17], [22]. When the 
software enables SPI, these pins are then connected to the SPI 
port. However, the pin directions are not automatically 
configured, because they are dependent on the role of SPI. As 
a slave, the MOSI, SCK, and SS pins are supposed to be set 
to input, while the MISO is set to output. The pin directions 
should be configured in the software. For snooping the SPI 
bus, we must make the MCU a half-duplex device, since the 
conventional pin configuration as a full-duplex device would 
result in a bus conflict on the MISO wire. This can be solved 
in several ways. In general, each SPI pin is connected to an 
internal bi-directional port with an optional internal pull-up 
register [17]. There is also a tri-state between the pin and the 
internal port. By setting the tri-state on the MCU’s MISO pin 
to high impedance, the pin can be disabled, when the MCU is 
in slave mode. If the MISO pin of the MCU supports an 
open-drain output (that is, a logical 1 indicates a 
disconnection from the external resistive pull-up, while a 
logical 0 indicates a real 0), then the MCU can write a 0xff 
byte after it receives each byte to accomplish the same effect 
as a high-impedance output. 

IV. Performance Evaluation 

1. Application and Assumptions 

We test the MHP on a suite of wireless sensing applications 
that demand high throughput and low latency during active 
intervals. ECG-type applications typically demand 125 to 
1,000 samples per second per channel. The camera module in 
[16] supports VGA and QVGA resolutions. The MCU on the 
platform can receive 4.1 frames per second from the camera at 
QVGA resolution. To transmit such a video image to the base 
station in real time, the data rate will need to exceed 250 kbps.  

 

Fig. 3. Block diagram for snooping SPI bus. 
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Across all of these applications, the required throughput ranges 
from 50 kbps to 100 kbps. 

When data is transferred, either a data source or data sink can 
be a temporary master. No matter which one becomes the 
temporary master, the number of SPI transactions does not 
change. For a performance evaluation, we choose the data 
source as the temporary master without loss of generality. 

2. Data Transfer Performance on SPI  

A. Configuration for the Experiment 

For the MHP performance evaluation, we implement two 
different versions of a data transfer application and compare the 
experiment results. To transfer the data, one version uses a 
baseline (no-MHP) approach and the other uses the MHP. 
Except for their data transfer approaches, the versions are 
almost identical. For the baseline approach, the MCU receives 
data from the data source and sends the data to the data sink. 
However, the data source cannot spontaneously send sensor 
data to the MCU through the SPI bus unless the master 
activates the SPI data transfer. There are two ways that the 
slave sends data to the master. One is that the master waits for a 
predefined time and reads the SPI data register on the slave. 
The other one is that the slave uses one extra signal line. We 
use the latter one. Even if the latter one needs one more extra 
signal line, it may be faster than the first one. We refer to the 
extra signal as DataReady. If the data source receives a 
command to load data to the SPI data register, the data source 
loads the data and sets DataReady to high. If the data on the 
data source is transferred, the data source sets DataReady to 
low. The baseline approach uses the SPI bus and an I/O signal 
for DataReady, whereas the MHP approach uses only the SPI 
bus. 

MCU: For our experimental platform, we use Atmel’s AVR 
Butterfly, a wearable, multi-sensor platform based on the 
ATMega169V [23]. We set one up as the sensor node and one 
as the data source. The ATMega169V, an AVR 8-bit RISC 
MCU [17], runs at up to 8 MHz. The processor core without  
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Fig. 4. nRF24L01 RF transceiver packet format. 
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Fig. 5. Block diagram for experimental setup from source. 
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peripherals on the MCU is equivalent to the core on the 
ATMega128L, which is the MCU on MICA2 [3]. The 
ATMega169V MCU is thus representative of many wireless 
sensor platforms today. The MCU is configured as the bus 
master for the experiment. 

Data Source: We set up a second AVR board as the bus 
interface to a high-speed data source. Conceptually, the data 
source has a similar structure to the ADC module of the 
PASTA stack, which has an 8051 MCU operating in store-and-
forward mode on the module [12]. If the data source becomes a 
temporary master, the data source should know the SCK speed, 
polarity, and phase, as well as the bit order. The SPI 
configuration information is stored in the SPIConfig variable 
and given at the configuration stage by the MCU. 

Data Sink: For the data sink, we set up one Nordic 
nRF24L01 RF transceiver module, which uses the 2.4 GHz to 
2.527 GHz ISM band [24]. Figure 4 shows the packet format. 
The packet starts with one byte preamble, which is 
automatically added by the RF transceiver. The address length 
is configurable from 3 bytes to 5 bytes. We use a 5-byte 
address. The payload size in the nRF24L01 packet is 
configurable from 1 to 32 bytes. We measure the latency and 
throughput with a payload size of 4 to 32 bytes in 4-byte 
increments. A 16-bit CRC is added and checked by the RF 
transceiver. The transceiver has an SPI port on it. The SPI port 
is handled in hardware. Thus, SPI data can be sent and received 
without a time delay between consecutive bytes. 

For our experiment, the SCK rate is set to 2 MHz (Fig. 5), 
the maximum rate achievable by the AVR boards. 
Theoretically, a 2 MHz clock can transmit data at 250 kbps. 
This clock rate is fast enough to handle both a 2.4 GHz 
802.15.4/Zigbee data rate [25] and the Nordic transceiver. 

 

Fig. 6. Latency comparison. 
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Fig. 7. MHP latency improvement over baseline. 
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B. Latency and Throughput 

The latency and throughput for the baseline are measured 
from the start of the data source access to the completion of the 
data transfer to the data sink on the MCU. The latency and 
throughput for the MHP are measured from the SwitchToTX 
transmission to the SwitchBack arrival on the MCU. Figure 6 
compares the two latency measurements. When the payload 
size is 4 bytes, we observe a latency of 152 μs for the baseline, 
and 117 μs for MHP. The difference is 35 μs. As the payload 
size increases, both curves grow linearly as does the latency 
difference. At the maximum payload size of 32 bytes, the 
latency of the baseline is 802 μs versus MHP’s 291 μs. Figure 
7 shows the MHP latency improvement against the baseline. 
When the payload size is 32 bytes, the latency improvement is 
64%. If the data size is greater than or equal to 12 bytes, the 
latency improvement is greater than 50%. In other words, if the 
size of data transferred is greater than or equal to 12 bytes, the 
MHP latency is less than half of the baseline latency. If the 
payload size is greater than or equal to 24 bytes, the  
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Fig. 8. Throughput comparison. 
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Fig. 9. MHP throughput improvement over baseline. 
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improvement is greater than 60%, and the improvement curve 
becomes stable. To increase the latency performance, it is more 
efficient to send more than 24 bytes of data at a time. 

Figure 8 shows the measured throughput comparison. At a 
payload size of 4 bytes, the baseline throughput is 211 kbps 
versus MHP’s 274 kbps, with a difference of 63 kbps. As the 
payload size grows, the difference also grows. At the maximum 
payload of 32 bytes, the throughput of the baseline is 319 kbps 
versus MHP’s 880 kbps. The difference is 561 kbps. Figure 9 
shows the MHP throughput improvement. If the payload size is 
greater than or equal to 12 bytes, the MHP throughput 
improvement is greater than 100%. When the payload size is 32 
bytes, the throughput improvement is 176% compared to the 
throughput of the baseline. Unlike the latency improvement 
curve, the throughput improvement curve steadily grows up to 
32 bytes, although the growth rate goes down. 

The super-linear improvement in latency and throughput is 
due to the fact that SPI transactions between the MCU and the 
data source take a longer time than those between the MCU 
and the data sink. This is because the RF transceiver handles  

 

Fig. 10. Energy consumption comparison. 
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Fig. 11. MHP energy consumption improvement over baseline.
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SPI data in hardware, whereas on the MCU, software needs to 
access the SPI hardware register, and this takes more time. 
Another difference is that in the MHP, the MCU and data 
source communicate with each other during the role change 
period. By our measurement, it takes 12 μs for the data source 
to become a master after the start of the transaction. This is a 
negligibly small number in terms of the SPI transaction time. 
Thus, the baseline latency is more than twice the MHP latency, 
and the baseline throughput is less than half of the MHP 
throughput. 

C. Energy Consumption 

Energy efficiency is one of the important issues in wireless 
sensor network applications. Figure 10 shows the measured 
energy consumptions during one data transfer transaction from 
the source to the sink. For the baseline, the energy consumption 
is measured for two SPI transactions: one transaction from the 
source to the MCU and the other transaction from the MCU to 
the sink. For the MHP, the energy consumption is measured for 
only one SPI transaction from the source to the sink. When 
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Fig. 12. Block diagram for experimental setup from source to
base station. 
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the payload size is 4 bytes, the energy consumed is 3.46 μJ for 
the MHP and 4.58 μJ for the baseline. The difference is 1.12 μJ. 
At the maximum payload size, the energy consumption for the 
MHP is 8.61 μJ and the energy consumption for the baseline is 
24.23 μJ. The difference is 15.62 μJ. Like the latency and 
throughput graphs, the energy consumption graph grows 
linearly. Figure 11 shows the MHP energy consumption 
improvement on the SPI data transfer. The energy consumption 
of the MHP is 76% of that of the baseline at a payload size of 4 
bytes. At the maximum payload size, the energy consumption 
of the MHP is 36% that of the baseline. This is a 64% 
improvement in energy consumption.  

The shape of the curve in Fig. 11 is quite similar to that of the 
curve in Fig 7. This is because the power consumption of both  
approaches is nearly identical and the energy consumption 
depends on the latency. If the data size is greater than or equal 
to 12 bytes, the latency improvement is greater than 50%. If the 
payload size is greater than or equal to 24 bytes, the 
improvement is greater than 60% and the improvement curve 
becomes stable. Like the latency, it is more efficient to send 
more than 24 bytes of data at a time. 

3. Source to Base Station Performance  

Localized improvements may not lead to global, end-to-end 
improvements due to Amdahl’s Law. This section presents 
measurement results that quantify the impact of the MHP, an 
on-board bus protocol, on the global performance of a data 
transaction from a sensor on the wireless sensor node to the 
base station. Our metrics are the throughput, data transfer time, 
which is the time difference from the start of the i-th packet 
transmission to the start of the (i+1)th packet transmission, and 
energy consumption for the data transfer time. The (i+1)th 
transmission starts once the i-th transmission completely ends. 

A. Configuration for the Experiment 

We configure one additional node for a base station to 
evaluate the system-wise performance. The base station has a 
similar configuration as the sensor node. It uses the same AVR 

 

Fig. 13. Data transfer time comparison. 
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Fig. 14. MHP data transfer time improvement over baseline. 
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board and nRF24L01 RF transceiver module, but its sensors 
are not used. Data from the sensor node to the base station is 
transferred through the transceiver at 1 Mbps in air (Fig. 12). 

B. Data Transfer Time and Throughput 

Figure 13 shows the data transfer time measurements from 
the data source to the base station. A reference in this case 
involves the MCU, which continuously transmits dummy data 
over the RF transceiver to the base station, without any sensor 
data. The reference can be a lower bound of the data transfer 
time. At 4 bytes of payload, the data transfer time of the 
baseline approach (double-transaction) is 388 μs versus MHP’s 
328 μs, with a difference of 60 μs. As the payload size 
increases, all three curves grow linearly. At a maximum 
payload size of 32 bytes, the data transfer time of the baseline is 
1,260 μs versus MHP’s 728 μs, or a 532 μs difference. If the 
data transfer time for the MHP is compared to the reference, 
the reference time is 308 μs at 4 bytes of payload and 640 μs at 
the maximum payload size. The difference is 20 μs and 88 μs, 
respectively. The data transfer time for the MHP takes 114% of 
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Fig. 15. Throughput comparison. 
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Fig. 16. MHP throughput improvement over baseline. 
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the data transfer time for the reference, whereas the data 
transfer time for the baseline takes 197% of the data transfer 
time for the reference at the maximum payload size. 

Figure 15 shows a throughput comparison of the two 
approaches plotted against the sensorless reference. At a 
payload size of 4 bytes, the baseline throughput is 82 kbps 
compared to MHP’s 98 kbps, with a difference of 15 kbps. As 
the payload size grows, the difference also grows. At a 
maximum payload size of 32 bytes, the baseline throughput is 
203 kbps versus MHP’s 352 kbps; this difference is 149 kbps. 
The throughput of the reference is 104 kbps at a payload size of 
4 bytes and 400 kbps at the maximum payload size. The MHP 
throughput is 94% of the reference throughput at a payload size 
of 4 bytes and 88% of the reference throughput at the 
maximum payload size. The baseline throughput is 79% of the 
reference throughput at a payload size of 4 bytes and 51% of 
the reference throughput at the maximum payload size. Given 
that the throughput requirement for one camera application 
exceeds 256 kbps, the MHP is the only way that the system can 
meet the requirement without a hardware modification. 

Figures 14 and 16 show the MHP improvements over the 
baseline. When the payload size is 20 bytes, both improvement 
curves slowly grow. At the maximum payload size of 32 bytes, 
the MHP data transfer time improvement over the baseline is 
42%, which leads to a 73% throughput improvement. The 
reason there is an improvement at the lower platform-level 
over the SPI-level is simply due to Amdahl’s Law: we are not 
improving the actual over-the-air transmission time, which 
occurs at 1 Mbps compared to SPI’s 2 Mbps. Moreover, the 
transceiver itself incurs additional overhead per packet, 
including the formation of packet headers and a CRC, and it 
transmits a total of 40 bytes for every 32 bytes of payload. The 
MHP data transfer time on the node is 728 μs, whereas the 
MHP latency for the SPI data transfer is only 291 μs. This is  
because 60% of the platform-level latency actually goes into 
packetizing the payload and the over-the-air transmission. 
However, compared with the sensorless reference, the MHP 
achieves 88% of the theoretical maximum, whereas the 
baseline achieves 51%. In an MHP transaction, only 12% of 
the data transfer time is used for the MHP, while 88% of the 
data transfer time is used for wireless communications. 

C. Energy Consumption 

Figure 17 compares the energy consumption of the two 
approaches. The energy consumption is measured on the 
sensor node during one data transfer from the data source to the 
base station. When the payload size is 4 bytes, the energy 
consumed is 9.71 μJ for the MHP and 11.72 μJ for the baseline. 
The difference is 2.01 μJ. At the maximum payload size, the 
energy consumption is 21.55 μJ for the MHP and 38.05 μJ for 
the baseline. The difference is 16.50 μJ. Like the latency and 
throughput graphs, the energy consumption graph grows 
linearly. A comparison between the MHP energy consumption 
rate and the baseline is shown in Fig. 18. The energy 
consumption improvement over the baseline is 17% at a 
payload size of 4 bytes. When the payload size is 20 bytes, the 
energy consumption improvement over the baseline is 39%. At 
the maximum payload size, the improvement is 43%. The 
shape of the curve is also similar to that of the curve in Fig. 14 
as the power consumption of both approaches is similar and 
the energy consumption depends on the data transfer time. 

The performance of the MHP is better than that of the 
baseline in energy efficiency as well. Like the SPI data transfer 
case, as the payload size increases, the MHP improvements 
regarding data transfer time, throughput, and energy 
consumption over the baseline also increase. 

V. Conclusion 

This paper described the MHP for a fast and energy-efficient 
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Fig. 17. Energy consumption. 
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Fig. 18. MHP energy consumption improvement over baseline.
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data transfer over SPI in wireless sensor platforms. This 
eliminates a well-known bottleneck, namely, the double 
transaction problem, which caps the throughput and latency at 
half of the theoretical peak performance. Our MHP breaks the 
single, fixed bus master assumption in conventional SPI 
architectures using a simple, temporary exchange of the 
master/slave roles. The protocol is simple to implement, incurs 
low overhead, and is applicable to many conventional, low-
cost hardware architectures for sensor networks. It also 
eliminates an artificial data dependency on the MCU. 
Experiment results show that our implementation achieves 
significant improvement in latency (64%), throughput (176%), 
and energy consumption (64%), not only locally at the SPI-bus 
level, but, more importantly, globally at the end-to-end level, 
from a sensor device to the base station (73% and 43%). The 
reduced load can make available even more power 
management opportunities and time for useful computation, as 
well as significantly extend battery life for many emerging 
sensing applications. 
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