• Title/Summary/Keyword: wireless power

Search Result 3,245, Processing Time 0.039 seconds

A Relay Selection and Power Allocation Scheme for Cooperative Wireless Sensor Networks

  • Qian, Mujun;Liu, Chen;Fu, Youhua;Zhu, Weiping
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.4
    • /
    • pp.1390-1405
    • /
    • 2014
  • This paper investigates optimal relay selection and power allocation under an aggregate power constraint for cooperative wireless sensor networks assisted by amplify-and-forward relay nodes. By considering both transmission power and circuit power consumptions, the received signal-to-noise ratio (SNR) at the destination node is calculated, based on which, a relay selection and power allocation scheme is developed. The core idea is to adaptively adjust the selected relays and their transmission power to maximize the received SNR according to the channel state information. The proposed scheme is derived by recasting the optimization problem into a three-layered problem-determining the number of relays to be activated, selecting the active relays, and performing power allocation among the selected relays. Monte Carlo simulation results demonstrate that the proposed scheme provides a higher received SNR and a lower bit error rate as compared to the average power allocation scheme.

Relation between Induced Voltage of Rail and Feeding Line of Wireless Power Transfer System for Railway Application (철도용 무선전력전송시스템의 급전선로와 레일유기전압의 관계)

  • Kim, JaeHee;Park, Chan-Bae;Jung, Shin-Myung;Lee, Seung-Hwan;Lee, Byung-Song;Lee, Jun-Ho;Lee, Su-Gil
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.4
    • /
    • pp.228-232
    • /
    • 2014
  • The magnetic field generated by the feeding line of a wireless power transfer system induces voltage on the rail of a railway system. The induced voltage of the rail can have a bad influence on the track circuit and on safety. This paper simulated three feeding lines to study the relation between the feeding lines and the induced voltage of the rail; it also proposed magnetic field distribution of the feeding line to reduce the induced voltage.

Study on a Laser Wireless Power Charge Technology (레이저 무선충전 기술 연구)

  • Rhee, Dong-Hun;Kim, Sung-Man
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.12
    • /
    • pp.1219-1224
    • /
    • 2016
  • The current wireless power charge technologies are based on induction coupling, magnetic resonant coupling, electromagnetic wave, etc. However, the current wireless power charge technologies has several disadvantages including short transfer range, electromagnetic interference, etc. In this paper, we investigate and demonstrate a laser wireless power charge technology. A laser source is used in the transmitter to convert from electric power to optical power and a solar cell or a photodiode is used in the receiver to convert from optical power to electric power. The laser wireless power charge technology may be the most efficient wireless power charge technology in the long distance over than 10 meters. Our experimental results show a transfer efficiency of 2.15% at the 70-m long distance with a 100 mW laser transmitter and a photodiode receiver.

The Power Converter Circuit Characteristics for 3 kW Wireless Power Transmission (3 kW 무선 전력전송을 위한 전력 변환기 회로 특성)

  • Hwang, Lark-Hoon;Na, Seung-kwon;Kim, Jin Sun;Kang, Jin-hee
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.6
    • /
    • pp.566-572
    • /
    • 2020
  • In a wireless power transmitter, the characteristics and effects of wireless power transmission between two induction coils are investigated, and a power converter circuit and a battery charger/discharger circuit using wireless power transmission technology are proposed. The advantage of wireless power transmitters and wireless chargers is that, instead of the existing plug-in-mounted wired charger (OBC; on-board charger), the user can wirelessly charge the battery without connecting the power source when charging power to the battery. There is. In addition, the advantage of wireless charging can bring about an energy efficiency improvement effect by using the secondary side rectifier circuit and the receiving coil, but the large-capacity long-distance wireless charging method has a limitation on the transmission distance, so many studies are currently being conducted. The purpose of the study is to study the transmitter circuit and receiver circuit of a wireless power transmission device using a primary coil, a secondary coil, and a half bridge series resonance converter, which can transmit power of a non-contact type power transmitter. As a result, a new topology was applied to improve the power transmission distance of the wireless charging system, and through an experiment according to each distance, the maximum efficiency (95.8%) was confirmed at an output of 3 kW at an 8 cm transmission distance.

Algorithm for Improving the Computing Power of Next Generation Wireless Receivers

  • Rizvi, Syed S.
    • Journal of Computing Science and Engineering
    • /
    • v.6 no.4
    • /
    • pp.310-319
    • /
    • 2012
  • Next generation wireless receivers demand low computational complexity algorithms with high computing power in order to perform fast signal detections and error estimations. Several signal detection and estimation algorithms have been proposed for next generation wireless receivers which are primarily designed to provide reasonable performance in terms of signal to noise ratio (SNR) and bit error rate (BER). However, none of them have been chosen for direct implementation as they offer high computational complexity with relatively lower computing power. This paper presents a low-complexity power-efficient algorithm that improves the computing power and provides relatively faster signal detection for next generation wireless multiuser receivers. Measurement results of the proposed algorithm are provided and the overall system performance is indicated by BER and the computational complexity. Finally, in order to verify the low-complexity of the proposed algorithm we also present a formal mathematical proof.

Implementation of Effective Wireless Power Transmission Circuit for Low Power System

  • Lho, Young Hwan
    • Journal of IKEEE
    • /
    • v.22 no.3
    • /
    • pp.846-849
    • /
    • 2018
  • Wireless power transfer (WPT) is the technology that enables the power to transmit electromagnetic field to an electrical load without the use of wires. There are two kinds of magnetic resonant coupling and inductive coupling ways transmitting from the source to the output load. Compared with microwave method for energy transfer over a long distance, the magnetic resonance method has the advantages of reducing the barrier of electromagnetic wave and enhancing the efficiency of power transmission. In this paper, the wireless power transfer circuit having a resonant frequency of 13.45 MHz for the low power system is studied, and the hardware implementation is accomplished to measure the power transmission efficiency for the distance between the transmitter and the receiver.

Energy efficiency strategy for a general real-time wireless sensor platform

  • Chen, ZhiCong
    • Smart Structures and Systems
    • /
    • v.14 no.4
    • /
    • pp.617-641
    • /
    • 2014
  • The energy constraint is still a common issue for the practical application of wireless sensors, since they are usually powered by batteries which limit their lifetime. In this paper, a practical compound energy efficiency strategy is proposed and realized in the implementation of a real time wireless sensor platform. The platform is intended for wireless structural monitoring applications and consists of three parts, wireless sensing unit, base station and data acquisition and configuration software running in a computer within the Matlab environment. The high energy efficiency of the wireless sensor platform is achieved by a proposed adaptive radio transmission power control algorithm, and some straightforward methods, including adopting low power ICs and high efficient power management circuits, low duty cycle radio polling and switching off radio between two adjacent data packets' transmission. The adaptive transmission power control algorithm is based on the statistical average of the path loss estimations using a moving average filter. The algorithm is implemented in the wireless node and relies on the received signal strength feedback piggybacked in the ACK packet from the base station node to estimate the path loss. Therefore, it does not need any control packet overheads. Several experiments are carried out to investigate the link quality of radio channels, validate and evaluate the proposed adaptive transmission power control algorithm, including static and dynamic experiments.

Development of a Multiple SMPS System Controlling Variable Load Based on Wireless Network

  • Ko, Junho;Park, Chul-Won;Kim, Yoon Sang
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1221-1226
    • /
    • 2015
  • This paper proposes a multiple switch mode power supply (SMPS) system based on the wireless network which controls variable load. The system enables power supply of up to 600W using 200W SMPS as a unit module and provides a controlling function of output power based on variable load and a monitoring function based on wireless network. The controlling function for output power measures the variation of output power and facilitates efficient power supply by controlling output power based on the measured variation value. The monitoring function guarantees a stable power supply by observing the multiple SMPS system in real time via wireless network. The performance of the proposed system was examined by various experiments. In addition, it was verified through standardized test of Korea Testing Certification. The results were given and discussed.

Magnetic Wireless Power Transfer Antenna Using Ferrite (페라이트를 이용한 자기장 무선전력전송 안테나)

  • Ko, Nak-Young;Lee, Bon-Young;Song, Seong-Kyu;Park, Woo-Jin;Seo, Seok-Tae;Bien, Franklin
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.7
    • /
    • pp.49-54
    • /
    • 2017
  • In this paper, we propose magnetic field wireless power transfer antenna using Ferrite. It is possible to transfer magnetic field wireless power without independent ground by using characteristic of ferrite in the point that conventional magnetic field wireless power transfer was possible with independent grounding. Ferrite has a shielding effect of magnetic field and reduces leakage power, thereby improving transfer efficiency. We propose an antenna for magnetic field wireless power transfer using ferrite and confirmed that it is transmitted by 5W magnetic field wireless power through experiments. The wireless power transfer proposed in this paper can be applied variously to the Internet of things by using the magnetic field wireless power transfer through the metal.

Research on Medium-power Wireless Power Transmission using Commercial Power Frequency (60Hz) (상용전원 주파수(60Hz)를 사용한 중전력 무선전력전송 연구)

  • Gi-Bum Lee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.3
    • /
    • pp.497-506
    • /
    • 2024
  • In this paper, medium-power wireless power transmission is implemented using the commercial power frequency (60 Hz). Since general magnetic induction wireless power transmission devices use more than several tens of kHz, the commercial power frequency (60 Hz) cannot be used as is. Therefore an AC/DC converter is used to convert the 60 Hz power frequency into DC, and a high-frequency power amplifier is used to convert DC into several tens of kHz. In magnetic induction wireless power transmission, the AC/DC converter and high-frequency power amplifier are removed, and a extremely low frequency wireless power transmission(ELF-WPT) system using commercial frequency consisting of only transmitting resonance tank, transmitting coil, receiving resonance tank, and receiving coil is implemented, and verified through wireless power transmission experiments.