DOI QR코드

DOI QR Code

Research on Medium-power Wireless Power Transmission using Commercial Power Frequency (60Hz)

상용전원 주파수(60Hz)를 사용한 중전력 무선전력전송 연구

  • Gi-Bum Lee (Dept. of Energy Engineering, DAEJIN University)
  • 이기범 (대진대학교 에너지공학부)
  • Received : 2024.05.27
  • Accepted : 2024.06.12
  • Published : 2024.06.30

Abstract

In this paper, medium-power wireless power transmission is implemented using the commercial power frequency (60 Hz). Since general magnetic induction wireless power transmission devices use more than several tens of kHz, the commercial power frequency (60 Hz) cannot be used as is. Therefore an AC/DC converter is used to convert the 60 Hz power frequency into DC, and a high-frequency power amplifier is used to convert DC into several tens of kHz. In magnetic induction wireless power transmission, the AC/DC converter and high-frequency power amplifier are removed, and a extremely low frequency wireless power transmission(ELF-WPT) system using commercial frequency consisting of only transmitting resonance tank, transmitting coil, receiving resonance tank, and receiving coil is implemented, and verified through wireless power transmission experiments.

본 논문에서는 상용전원 주파수(60 Hz)를 사용하여 중전력 무선전력전송을 구현한 것이다. 일반적인 자기유도 무선전력전송 장치는 수십 kHz 이상 사용하기 때문에 상용전원 주파수(60 Hz)를 그대로 사용할 수 없고, 교류/직류 변환기를 사용하여 60 Hz 전원주파수를 DC로 만들고, 고주파 파워앰프를 사용하여 DC를 수십 KHz로 만들어서 사용한다. 자기유도 무선전력전송에서 교류/직류 변환기와 고주파 파워앰프를 제거하고, 송전 공진탱크, 송전코일, 수전 공진탱크, 수전코일 만으로 구성한 상용전원 주파수를 사용하는 극저주파 무선전력전송 시스템을 구현하고, 무선전력전송 실험으로 검증하였다.

Keywords

References

  1. Andre Kurs, Aristeidis Karalis, Robert Moffatt, J. D. Joannpoulos, Peter Fisher, and Marin Soljacic, "Wireless Power Transfer via Strongly Coupled Magnetic Resonances," Science Magazine, vol. 317, no. 5834, 2007, pp. 83-86.
  2. Aristeidis Karalis, J. D. Joannopoulos, Marin Soljacic, "Efficient wireless non-radiative mid-range energy transfer," Annals of Physics, vol. 323, 2008, pp. 34-48.
  3. Yiming Zhang, Shuxin Chen, Xin LI, and Yi Tang, "Design of High-Power Static Wireless Power Transfer via Magnetic Induction: An Overview", Trnasactions on Power Electronics and Applications, vol. 6, no. 4, 2021, pp. 281-297.
  4. Menno Treffers, "History, Current Status and Future of the Wireless Power Consortium and the Qi Interface Specification," IEEE Circuits and Systems Magazine, vol. 15, no. 2, 2015, pp. 28-31.
  5. Jong-Gyun Lim, "A study on the development of high-efficiency transmitting and receiving coils for wireless charging of drones," Journal of the Korea Institute of Electronic Communication Sciences, vol. 17, no. 2, 2022, pp. 213-218.
  6. Sung-Man Kim, Jae-Woo Shin, "Underwater Simultaneous Light Information and Power Transmission using a Laser Diode," Journal of the Korea Institute of Electronic Communication Sciences, vol. 17, no. 5, 2022, pp. 853-858.
  7. Zhiyuan Shi, Shaorong Fang, Nenggui Chen and Zuosheng Xie, "High Efficiency Wireless Power Transfer System for Medium Power," International Conference on Electrical, Mechanical and Industrial Engineering, 2016, pp. 31-33.
  8. Reka Nadasia, Dr. Csaba Tothb, and Peter Balog, "Towards the inductive on-road charging system for electric buses: Inspection of the Hungarian electric mobility fleet," International Scientific Conference on Mobility and Transport, Transportation Research Procedia 41, 2019, pp. 380-394.
  9. Yiming. Zhang, Key Technologies of Magnetically Coupled Resont Wireless Power Transfer. Beijing, China, Springer, 2017.
  10. F. Mohammed Ali A. Al-Raie, "Design of Input Matching Networks for Class-E RF Power Amplifiers," High Frequency Electronics, 2011, pp. 40-48.
  11. Mohd Zaifulrizal ZAINOL, Nasrudin ABD. RAHIM, and Jeyraj SELVARAJ, "Design and Analysis of Contactless Transformer using Series Resonant Converter," Przeglad Elektrotechniczny, 2013, pp. 192-195.
  12. Ahmed A. S. Mohamed, Ahmed A. Shaier, Hamid Metwally, and Sameh I. Selem, "Wireless charging technologies for electric vehicles: Inductive, capacitive, and magnetic gear," IET Power Electronics, 2023, pp. 1-27.