DOI QR코드

DOI QR Code

3 kW 무선 전력전송을 위한 전력 변환기 회로 특성

The Power Converter Circuit Characteristics for 3 kW Wireless Power Transmission

  • 황락훈 (세명대학교 전기공학과) ;
  • 나승권 (한국폴리텍대학 원주캠퍼스 전기제어학과) ;
  • 김진선 (세명대학교 전기공학과) ;
  • 강진희 (세명대학교 전기공학과)
  • Hwang, Lark-Hoon (Department of Electrical Engineering, Semyung University) ;
  • Na, Seung-kwon (Department of Information Electric Control Engineering, Korea Polytechnic College Wonju Campus) ;
  • Kim, Jin Sun (Department of Electrical Engineering, Semyung University) ;
  • Kang, Jin-hee (Department of Electrical Engineering, Semyung University)
  • 투고 : 2020.09.07
  • 심사 : 2020.12.21
  • 발행 : 2020.12.30

초록

무선 전력전송기에서 두 유도 코일 사이의 무선 전력전송 특성과 영향에 대해서 알아보고, 무선 전력전송 기술을 이용한 전력변환기 회로와 배터리 충·방전기 회로를 제안한다. 무선 전력전송기 및 무선 충전기의 장점은 기존의 플러그인 탑재형 유선 충전기(OBC; on-board charger) 대신 무선으로 전력을 전송하여 배터리에 전력 충전 시 사용자가 외부에서 전원을 연결 시키지 않고 무선으로 충전할 수 있는 점이다. 또한 무선충전의 이점은 2차 측 정류기의 회로와 수신 코일을 사용하여 에너지 효율 향상 효과를 가져올 수 있으나, 대용량의 원거리 무선충전 방식은 전송거리에 대한 한계가 있어 현재 많은 연구가 진행되고 있다. 비 접촉 방식의 전력 전송기의 전력을 전송 할 수 있는 송신부 인 1차측 코일과 수신부인 2차측 코일 및 하프브리지(half bridge) 직렬공진 컨버터를 적용한 무선 전력전송장치의 송신부 회로와 수신부 회로의 연구를 목적으로 무선충전시스템의 전력전송거리 향상을 위한 새로운 토폴로지를 적용하고, 각각의 거리에 따른 실험을 통해 8 cm 전송거리에서 출력 3 kW 일 때, 최대 효율(95.8%)을 확인 할 수 있었다.

In a wireless power transmitter, the characteristics and effects of wireless power transmission between two induction coils are investigated, and a power converter circuit and a battery charger/discharger circuit using wireless power transmission technology are proposed. The advantage of wireless power transmitters and wireless chargers is that, instead of the existing plug-in-mounted wired charger (OBC; on-board charger), the user can wirelessly charge the battery without connecting the power source when charging power to the battery. There is. In addition, the advantage of wireless charging can bring about an energy efficiency improvement effect by using the secondary side rectifier circuit and the receiving coil, but the large-capacity long-distance wireless charging method has a limitation on the transmission distance, so many studies are currently being conducted. The purpose of the study is to study the transmitter circuit and receiver circuit of a wireless power transmission device using a primary coil, a secondary coil, and a half bridge series resonance converter, which can transmit power of a non-contact type power transmitter. As a result, a new topology was applied to improve the power transmission distance of the wireless charging system, and through an experiment according to each distance, the maximum efficiency (95.8%) was confirmed at an output of 3 kW at an 8 cm transmission distance.

키워드

참고문헌

  1. Y. Hori, "Novel EV society based on motor/ capacitor/ wireless - application of electric motor, supercapacitors, and wireless power transfer to enhance operation of future vehicles," in 2012 IEEE MTT-S International Microwave Workshop Series on Innovative Wireless Power Transmission: Technologies, Systems, and Applications, Kyoto: Japan, pp. 3-8, 2012.
  2. T. P. Duong and J. W. Lee, "Experimental results of high-efficiency resonant coupling wireless power transfer using a variable coupling method," IEEE Microwave and Wireless Components Letters, Vol. 21, No 8. pp.442-444, 2011. https://doi.org/10.1109/LMWC.2011.2160163
  3. O. Jossefsson, A. Lindskog, S. Lundmark, and T. Thiringer, "Assessment of a multilevel converter for a phev Charge and traction application," in The XIX International Conference on Electrical Machines - ICEM 2010, Rome: Italy, pp. 1-6, 2010.
  4. X. Zhou, G. Wang, S. Lukic, S. Bhattacharya, and A. Huang, "Multi-function bi-directional battery charger for plug-in hybrid electric vehicle application," in 2009 IEEE Energy Conversion Congress and Exposition, San Jose: CA, pp. 3930-3936, 2009.
  5. Y. J. Lee, A. K. Khaligh, and A. Emadi, "Advanced integrated bidirectional AC/DC and DC/DC converter for plug-in hybrid electric vehicles," IEEE Transactions on Vehicular Technology, Vol. 58, No. 8, pp. 3970-3980, 2009. https://doi.org/10.1109/TVT.2009.2028070
  6. A. Y. Saber and G. K. Venayagamoorthy, "Plug-in vehicles and renewable energy sources for cost and emission reductions," IEEE Transactions on Industrial Electronics, Vol. 58, No. 4, pp. 1229-1238, 2011. https://doi.org/10.1109/TIE.2010.2047828
  7. A. Hajimiragha, C. A. Canizares, M. W. Fowler, and A. Elkamel, "Optimal transition to plug-in hybrid electric vehicles in ontario, canada, considering the electricity-grid limitations," IEEE Transactions on Industrial Electronics, Vol. 57, No. 2, pp. 132 690-701, 2011.
  8. M. Grenier, M. G. Hosseini, Aghdam, and T. Thiringer, "Design of on-board charger for plug-in hybrid electric vehicle," in 5th IET International Conference on Power Electronics, Machines and Drives, Brighton: UK, pp. 1-6, 2010.
  9. Y. Xue, L. Chang, S. B. Kjær, J. Bordonau, and T. Shimizu, "Topologies of single-phase inverters for small distributed power generators: an overview," IEEE Transactions on Power Electronics, Vol. 19, No. 5, pp. 1305-1314, 2004. https://doi.org/10.1109/TPEL.2004.833460
  10. R. B. Godoy, H. Z. Maia, F. Jacques, T Filho, L. Galotto, J. Onofre, P. Pinto, and G. S. Tatibana, "Design and implementation of a utility interactive converter for small distributed generation," in Conference Record of the 2006 IEEE Industry Applications Conference Forty-First IAS Annual Meeting, Tampa: FL pp. 1032-1038. 2004.
  11. M. N. Marwali and A. Keyhani, "Control of distributed generation systems-part I: voltages and currents control," IEEE Transactions on Power Electronics, Vol. 19, No. 6, pp. 1541-1550, 2004. https://doi.org/10.1109/TPEL.2004.836685
  12. J. Balakrishnan, "Renewable energy and distributed generation in rural villages," in First International Conference on Industrial and Information Systems, Kandy: Sri Lanka, pp. 190-195. 2006.
  13. M. A. Bloom, G. Niu, and M. Krishnamurthy, "Design considerations for wireless electric vehicle charging," in 2013 IEEE Transportation Electrification Conference and Expo, Detroit: MI, pp. 1-6. 2013.
  14. M. M. John. "Wireless power charging of plug-in electric vehicles (pev's)," PEL's Digital Media Services, IEEE Power Electronics Society, Online. 8 Dec. 2011. Lecture.
  15. SAE J1772, SAE Electric vehicle and plug in hybrid electric vehicle conductive charge coupler, SAE International, 2012.
  16. D. Guatam, F. Musavi, M. Edington, W. Eberle, and W. G. Gunford, "An automotive on-board 3.3 kW battery charger for phev application," in 2011 IEEE Vehicle Power and Propulsion Conference, Chicago: IL, pp. 1-6, 2011.
  17. T. H. Kim, S. J. Lee, and W. J. Choi, "Design and control of the phase-shift full bridge converter for the on-board battery charger of the electric forklift," in 8th International Conference on Power Electronics, Jeju: Korea, pp. 2709-2716, 2012.
  18. L. H. Hwang, S. K. Na, J. R. Kim, G. H. Choi and J. S. Kim, "A study on low power energy transfer circuits of the non contact method by means of solar generation," Journal of Advanced Navigation Technology, Vol. 18, No. 1, pp. 35-39, 2014. https://doi.org/10.12673/jkoni.2014.18.1.35
  19. L. H. Hwang, S. K. Na, S. H. Oh, "Characteristic pcs of inverter by boost converter of pv generation," Journal of Advanced Navigation Technology, Vol. 22, No. 6, pp. 644-664, 2018.