• Title/Summary/Keyword: wireless condition monitoring

Search Result 137, Processing Time 0.03 seconds

Auto Dispatch Device of Parturition Beginning Signal by Temperature and a Load Sensor at Ubiquitous Circumstance in Pig Industry (양돈산업에 있어서 유비쿼터스 환경에서 온도 및 하중 센서에 의한 자동 분만 알림 시스템 개발)

  • Lee, Jang-Hee;Baek, Soon-Hwa;Yon, Seung-Ho
    • Reproductive and Developmental Biology
    • /
    • v.33 no.3
    • /
    • pp.139-146
    • /
    • 2009
  • This study tried to develop the system (device) that automatically notify a manager of condition just before and after farrowing to extend ubiquitous-based technology and to increase efficiency of delivery care and productivity by reducing human labor and time on standby when farrowing management is done in the difficult and hard working environment of farrowing such as night or holidays in field sand especially in pig industry. In this test, selected 10 gilts were executed timed artificial insemination and were set up each temperature sensor and load sensor to them 3 days before the estimated farrowing day and were observed the farrowing situation. This study was embodied the NESPOT-based (KT Corporation) monitoring system, the system to transmit data in real time by utilization of wireless LAN and the sensor module to apply the ubiquitous environment to them. And this study was observed the situation to automatically notify situations of 10 gilts that first bore just before and after farrowing. The result obtained the farrowing situations of them in real time by setup of the NESPOT-based monitoring system to check farrowing situation directly is as follow. The average time of the automatic notice about situation just before farrowing by the temperature sensor was 27.5 minutes before the beginning of farrowing (the expulsion time of a piglet). 6 of 8 pregnant gilts that first bore automatically were notified situations just before farrowing and the temperature sensors inserted into 2 ones before farrowing were omitted. (The automatic notice rate 75%) The average time of the automatic notice of situation just after farrowing by the load sensor was taken 46.5 minutes after the beginning of farrowing (the expulsion time of a first piglet). The average gestation period of 8 ones that first bore and were tested by the automatic notice of farrowing situation was 115.6 days. This result found that the automatic farrowing notice system by the temperature sensor is more efficient than the load sensor as the automatic farrowing alarm device and sanitary treatment and improvement of the omission rate were required.

Development of the Dredged Sediments Management System and Its Managing Criteria of Debris Barrier (사방댐 준설퇴적물 관리시스템 개발 및 관리기준 제안)

  • Song, Young-Suk;Yun, Jung-Mann;Jung, In-Keun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.4
    • /
    • pp.267-275
    • /
    • 2018
  • The dredged sediment management system was developed to have an objective, quantitative and scientific decision for the optimum removal time of dredged sediments behind debris barrier and was set up at the real site. The dredged sediment management system is designed and developed to directly measure the dredged sediments behind debris barrier in the field. This management system is composed of Data Acquisition System (DAS), Solar System and measurement units for measuring the weight of dredge sediments. The weight of dredged sediments, the water level and the rainfall are measured in real time using the monitoring sensors, and their data can be transmitted to the office through a wireless communication method. The monitoring sensors are composed of the rain gauge to measure rainfall, the load cell system to measure the weight of dredged sediments, and water level meter to measure the water level behind debris barrier. The management criteria of dredged sediments behind debris barrier was suggested by using the weight of dredged sediments. At first, the maximum weight of dredged sediments that could be deposited behind debris barrier was estimated. And then when 50%, 70% and 90% of the maximum dredged sediments weight were accumulated behind debris barrier, the management criteria were divided into phases of Outlooks, Watch and Warning, respectively. The weight of dredged sediments can be monitored by using the dredged sediment management system behind debris barrier in real time, and the condition of debris barrier and the removal time of dredged sediments can be decided based on monitoring results.

Design of Multi-node Real-time Diagnostic and Management System Using Zigbee Sensor Network (Zigbee 센서 네트워크를 활용한 다중노드 실시간 진단 및 관리시스템 설계)

  • Kang, Moonsik
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.6
    • /
    • pp.152-161
    • /
    • 2014
  • In this paper, a multi-node real-time diagnostic and management system based on zigbee sensor network is proposed, which is to monitor and diagnose multiple nodes as well as to control the data generated from the various multiple sensors collectively. The proposed system is designed to transmit the collected wireless and wired data to the server for monitoring and controling efficiently the condition for multi-nodes by taking the corresponding actions according to the analysis. The system is implemented to make it possible to manage the sensor data by classifying them, of which data are issued from the clustered sources with a number of the remote sensors. In order to evaluate the performance of the proposed system, we measure and analyze both the transmission delay time according to the distance and the data loss rate issued from multiple sensors. The results shows that the proposed system has a good performance.

A Study on the Safety Monitoring of Bridge Facilities based on Smart Sensors (스마트 센서 기반의 교량 시설물 안전 모니터링 기법 연구)

  • YEON, Sang-Ho;KIM, Joon-Soo;YEON, Chun-Hum
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.2
    • /
    • pp.97-106
    • /
    • 2019
  • Today, many smart sensor's measurement instruments are used to check the safety situation of various medium and large bridge structures that should be maintained in the construction facilities, but most of them use the method of measuring and confirming the displacement behavior of the bridge at regular intervals. In order to continuously check the safety situation, various measuring instruments are used, but most of them are not able to measure and measure the displacement and behavior of main construction structures at regular intervals. In this study, GNSS and environment smart sensors and drone's image data are transmitted to wireless network so that risk of many bridge's structures can be detected beforehand. As a result, by diagnosing the fine displacement of the bridge in real time and its condition, reinforcement, repair and disaster prevention measures for the structural parts of the bridges, which are expected to be dangerous, and various disasters and accidents can be prevented, and disaster can be prevented could suggest a new alternative.

Protocol implementation for simultaneous signal continuation acquisition of industrial plant machine condition in wireless sensor networks (산업플랜트 기계상태 동시신호 연속취득을 위한 무선센서 네트워크프로토콜 구현)

  • Lee, Hoo-Rock;Chung, Kyung-Yul;Rhyu, Keel-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.7
    • /
    • pp.760-764
    • /
    • 2015
  • Wireless sensors, installed on machinery, and Time Division Multiple Access (TDMA) transmission make an ideal system for monitoring machine conditions in industrial plants because there is no need for electronic wiring. However, there has not yet been a successful field application of such a system, capable of continuously transmitting data at sample rates greater than 100 Hz. In this research, a TDMA network protocol capable of acquiring data from multiple sensors at sample rates greater than 100 Hz was developed for field application. The protocol was implemented in a single cluster-star topology network, and the system was evaluated based on the node number and transmission distance. Network simulator 2 (ns-2) was used for a real field simulation. Non-TDMA and TDMA protocol cases were compared using four sensor nodes. In the cases of 20-s and 40-s transmission times, there was little difference between the reception rates of the non-TDMA and TDMA systems. However, the difference was much greater when using a 60-s transmission time.

A Conceptual Design of Maintenance Information System Interlace for Real-Time Diagnosis of Driverless EMU (무인전동차의 실시간 상태 진단을 위한 유지보수 정보시스템 인터페이스에 대한 개념설계)

  • Han, Jun-hee;Kim, Chul-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.63-68
    • /
    • 2017
  • Although automated metro subway systems have the advantage of operating a train without a train driver, it is difficult to detect an immediate fault condition and take countermeasures when an unusual situation occurs. Therefore, it is important to construct a maintenance information system (MIS) that detects the vehicle failure/status information in real time and maintains it efficiently in the depot of the railway's vehicles. This paper proposes a conceptual design method that realizes the interface between the train control system (TCS), the operation control center train control monitoring system (OCC-TCMS) console, and the MIS using wireless communication network in real-time. To transmit a large amount of information on 800,000 occurrences per day during operation, data was collected in a 56 byte data table using a data processing algorithm. This state information was classified into 4 hexadecimal codes and transmitted to the MIS by mapping the status and the fault information on the vehicle during the main line operation. Furthermore, the transmission and reception data were examined in real time between the TCS and MIS, and the implementation of the failure information screen was then displayed.

Implementation of Acceleration Sensor-based Human activity and Fall Classification Algorithm (가속도 센서기반의 인체활동 및 낙상 분류를 위한 알고리즘 구현)

  • Hyun Park;Jun-Mo Park;Yeon-Chul, Ha
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.2
    • /
    • pp.76-83
    • /
    • 2022
  • With the recent development of IT technology, research and interest in various biosignal measuring devices is increasing. As an aging society is in full swing, research on the elderly population using IT-related technologies is continuously developing. This study is about the development of life pattern detection and fall detection algorithm, which is one of the medical service areas for the elderly, who are rapidly developing as they enter a super-aged society. This study consisted of a system using a 3-axis accelerometer and an electrocardiogram sensor, collected data, and then analyzed the data. It was confirmed that behavioral patterns could be classified from the actual research results. In order to evaluate the usefulness of the human activity monitoring system implemented in this study, experiments were performed under various conditions, such as changes in posture and walking speed, and signal magnitude range and signal vector magnitude parameters reflecting the acceleration of gravity of the human body and the degree of human activity. was extracted. And the possibility of discrimination according to the condition of the subject was examined by these parameter values.