DOI QR코드

DOI QR Code

A Study on the Safety Monitoring of Bridge Facilities based on Smart Sensors

스마트 센서 기반의 교량 시설물 안전 모니터링 기법 연구

  • 연상호 (세명대학교 대학원 건설공학과) ;
  • 김종수 (대림산업(주) 토목사업부) ;
  • 연춘흠 ((주)대교컨설턴트 기술연구소)
  • Received : 2019.03.15
  • Accepted : 2019.06.12
  • Published : 2019.06.30

Abstract

Today, many smart sensor's measurement instruments are used to check the safety situation of various medium and large bridge structures that should be maintained in the construction facilities, but most of them use the method of measuring and confirming the displacement behavior of the bridge at regular intervals. In order to continuously check the safety situation, various measuring instruments are used, but most of them are not able to measure and measure the displacement and behavior of main construction structures at regular intervals. In this study, GNSS and environment smart sensors and drone's image data are transmitted to wireless network so that risk of many bridge's structures can be detected beforehand. As a result, by diagnosing the fine displacement of the bridge in real time and its condition, reinforcement, repair and disaster prevention measures for the structural parts of the bridges, which are expected to be dangerous, and various disasters and accidents can be prevented, and disaster can be prevented could suggest a new alternative.

오늘날 수많은 건설 시설물 중에서 항상 시설하여 관리해야하는 다양한 중대형 교량구조물의 안전상황을 점검하기 위하여 여러 가지의 계측장비를 이용하고 있지만 대부분 일정한 주기별로 교량의 변위거동을 측정하고 확인하는 방법을 사용하고 있다. 지속적으로 안전상황을 점검하기 위하여 여러 가지의 계측장비를 이용하고 있지만 대부분 실시간으로는 주요 시설물의 변위와 거동을 측정하고 상시적으로 확인하지 못하고 있는 것이다. 본 연구에서는 대형 교량구조물의 운행에 위험을 사전에 감지할 수 있도록 GNSS 및 환경센서와 드론영상 데이터를 무선 네트워크로 전송하여 사용할 수 있도록 하였다. 그 결과, 실시간으로 교량의 미세변위와 그 상태를 진단함으로서 위험 요소가 예상되는 교량의 구조부에 대한 보강, 수리 및 재해 방지 조치가 가능하도록 하여, 각종 재난과 사고를 사전에 예방하고 방재할 수 있는 새로운 대안을 제시할 수 있었다.

Keywords

GRJBBB_2019_v22n2_97_f0001.png 이미지

FIGURE 1. Result of Image Matching on the Aerial photo with New Submarine-Dam Sructure (Ippo Aerea)

GRJBBB_2019_v22n2_97_f0002.png 이미지

FIGURE 2. Dtata Processing from Ubiquitius Sensors (CheongPyung Bridgee Section-B, 2017.5.30. 15:35)

GRJBBB_2019_v22n2_97_f0003.png 이미지

FIGURE 3. Measuring Dtata from IoT Sensors (Cheong-Pyung Bridge Section-B, 2018.5.30.)

GRJBBB_2019_v22n2_97_f0004.png 이미지

FIGURE 4. Compare Dtata of IoT Vibration Sensors at the Cheong Pyung Bridgee as Ture Boat Passing

GRJBBB_2019_v22n2_97_f0005.png 이미지

FIGURE 5. Making Program of Measurers Data from IoT Sensors(Temperature, Humidity, UlralLigh,N. CO2).

GRJBBB_2019_v22n2_97_f0006.png 이미지

FIGURE 6. Measurers Data from IoT Sensors on the Railway (Bridge Bridges Railway 0~43~69db)

GRJBBB_2019_v22n2_97_f0007.png 이미지

FIGURE 7. Measurers Data from USN Sensors on the Railway

GRJBBB_2019_v22n2_97_f0008.png 이미지

FIGURE 8. GNSS Survey on the Bangwha Bridge

GRJBBB_2019_v22n2_97_f0009.png 이미지

FIGURE 9. GNSS Displacement on the Bangwha Brid.

GRJBBB_2019_v22n2_97_f0010.png 이미지

FIGURE 5. Making Program of Measurers Data from IoT Sensors on the Railway Bridge

TABLE 1. The result of Analysis of Environment Site by USN

GRJBBB_2019_v22n2_97_t0001.png 이미지

References

  1. Arora, R, 2005. "Road networking using remote sensing and GIS technologies". Geoscience and Remote Sensing Symposium. IGARSS apos;05. Proceedings. 2005 IEEE International, Vol. 3, Issue, 25-29 2005, 1522-1525 (2005).
  2. Hanbaec Electronics Research Lab, 2015, "u-sensor network system using ZigbeX", ISBN 978-89-90758-12-5
  3. Boulis, C. Han, and M.B. Srivastava, 2003, "Design and Implementation of a Framework for Programmable and Efficient Sensor Networks", In the First international Conference on Mobile Systems, Applications and Services (MobiSys), San Francisco, CA.
  4. C.Shen, C.Srisathapornphat C.Jaikeo, 2001, "Sensor Information Networking Architecture and Applications," IEEE Personal Communications, 8(4):52-59. https://doi.org/10.1109/98.944004
  5. S.Yeon, J.Kim, 2018. "GIS/GNSS and USN/IoT Application for Construction Deformation Prevention" International Symposium on Remote Sensing, Processing material GNSS-Positioning (GP), pp.29
  6. S.H. Yeon, 2016. "Construction Disaster Prevention by use of Spatial Image and GNSS and IoT", ICCC2016 ISSN 223-201X Vol.14. No2
  7. Paul. Mather, 1987. "Computer Processing of Remotely-Sensed Image", John Wiley Sons pp.189-202,
  8. F. Rottensteiner and Ch. Briese, 2003. "Automatic Generation of Building Models from LiDAR data and the Integration of aerial images", ISPRS, Vol. XXXIV, Dresden.
  9. S. Yeon, Seungkuk Choi, 2013. "A Technique on the 3-D Terrain Analysis Modeling for Optimum Site Selection and development of Stereo Tourism in the Future" KoCon 2013 Fall Conference Proceeding.
  10. S.Yeon, 2017. "Development for Precision Positioning and Fine Displacement Monitoring Based on GNSS" JIIBC Vol. 17, No. 3, pp.145-152, Jun. 30, ISSN 2289-0238 https://doi.org/10.7236/JIIBC.2017.17.3.145
  11. J. Hightower and G. Borriell, 2001. "Location Systems for Ubiquitous Computing", IEEE Computer, 34(8):57-66,
  12. E. Steinle, F.H. Oliveira, 2015. "Assessment of Laser Scanning Technology for Change Detection in Buildings" University of Karlsruhe Institute for Photogrammetry and Remote Sensing."
  13. S.Yeon, 2008. "Application technology of 3D spatial information by integration of aerial photo and laser data" The Korea contents Association, ICCC2008, 6(2):193-197
  14. IEEE 2010. "Terrain Modeling from Lidar Range Data in Natural landscapes: A Predictive and Bayesian Framework. Large-Scale Physics-Based Terrain Editing Using Adaptive Tiles on the GPU" IEEE Transactions on Geoscience & Remote Sensing. Mar. 2010 Part2, 48(3):568-578.
  15. S. Oh, 2009. "Design of a Fault-Tolerant Routing Protocol for USN", JIBC 9(2):51-57
  16. IEEE 2004. "Compression of Large-Scale Terrain Data for Real-Time Visualization Using a Tiled Quad Tree". Computer Graphics Forum. Volans4(3):741-759.
  17. IEEE 2011. "Merging GPS and Atmospherically Corrected InSAR Data to Map 3-D Terrain Displacement Velocity" IEEE Transactions on Geoscience & Remote Sensing. 9(6): 2354-2360
  18. IEEE, 2013. "The Influence of Terrain Scattering on Radio Links in Hilly Mountainous Regions". IEEE Transactions on Antennas & Propagation. 61(3):1385-1395 https://doi.org/10.1109/TAP.2012.2231919
  19. Arches, 2009. "a Framework for Modeling Complex Terrains. Computer Graphics Forum". 28(2):457-467 https://doi.org/10.1111/j.1467-8659.2009.01385.x
  20. Hanbaek, 2013. "Ubiquitous Sensor Network System Using Zigbe X", Hanbaek Electronix Tecnology Institute, ISBN 978-89-90758-12-5
  21. S. Yeon, Y. Lee, 2008. 3D Spatial Image City Models Generation and Applications for Ubiquitous-City, JIIBC 8(1):47-52
  22. S. Yeon, Y. Lee, 2013. "Implementation of Ubiquitous based Construction Site Management", JIIBC, 13(2):240-244