• 제목/요약/키워드: winkler's foundation

검색결과 150건 처리시간 0.023초

Static analysis of multiple graphene sheet systems in cylindrical bending and resting on an elastic medium

  • Wu, Chih-Ping;Lin, Chih-Chen
    • Structural Engineering and Mechanics
    • /
    • 제75권1호
    • /
    • pp.109-122
    • /
    • 2020
  • An asymptotic local plane strain elasticity theory is reformulated for the static analysis of a simply-supported, multiple graphene sheet system (MGSS) in cylindrical bending and resting on an elastic medium. The dimension of the MGSS in the y direction is considered to be much greater than those in the x and z directions, such that all the field variables are considered to be independent of the y coordinate. Eringen's nonlocal constitutive relations are used to account for the small length scale effects in the formulation examining the static behavior of the MGSS. The interaction between the MGSS and its surrounding foundation is modelled as a Winkler foundation with the parameter kw, and the interaction between adjacent graphene sheets (GSs) is considered using another Winkler model with the parameter cw. A parametric study with regard to some effects on the static behavior of the MGSS resting on an elastic medium is undertaken, such as the aspect ratio, the number of the GSs, the stiffness of the medium between the adjacent layers and that of the surrounding medium of the MGSS, and the nonlocal parameter.

Using fourth order element for free vibration parametric analysis of thick plates resting on elastic foundation

  • Ozdemir, Y.I.
    • Structural Engineering and Mechanics
    • /
    • 제65권3호
    • /
    • pp.213-222
    • /
    • 2018
  • The purpose of this paper is to study free vibration analysis of thick plates resting on Winkler foundation using Mindlin's theory with shear locking free fourth order finite element, to determine the effects of the thickness/span ratio, the aspect ratio, subgrade reaction modulus and the boundary conditions on the frequency paramerets of thick plates subjected to free vibration. In the analysis, finite element method is used for spatial integration. Finite element formulation of the equations of the thick plate theory is derived by using higher order displacement shape functions. A computer program using finite element method is coded in C++ to analyze the plates free, clamped or simply supported along all four edges. In the analysis, 17-noded finite element is used. Graphs are presented that should help engineers in the design of thick plates subjected to earthquake excitations. It is concluded that 17-noded finite element can be effectively used in the free vibration analysis of thick plates. It is also concluded that, in general, the changes in the thickness/span ratio are more effective on the maximum responses considered in this study than the changes in the aspect ratio.

다층 포장 구조체의 개선된 지반 모델 (Advanced model of subbases for the multi-layered pavement system)

  • 조병완;이계삼
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1995년도 봄 학술발표회 논문집
    • /
    • pp.53-56
    • /
    • 1995
  • Despite the recent development of structural analysis programs for the CRCP pavements over Westergaard's equations and finite element techniques, the Winkler foundations which are modelled by series of vertical springs at the nodes are generally used for the computer modelling of subbases under the concrete slab. Herewith, two parameter of soil foundation model is adopted as the most convenient mathematical model to enable deflections outside the loaded area to be effected and to upgrade the Winkler foundations. This paper highlights the derivations of finite element method for the two-parameter soil foundation model in the concrete pavements.

  • PDF

Influence of the distribution shape of porosity on the bending FGM new plate model resting on elastic foundations

  • Hadj, Bekki;Rabia, Benferhat;Daouadji, Tahar Hassaine
    • Structural Engineering and Mechanics
    • /
    • 제72권1호
    • /
    • pp.61-70
    • /
    • 2019
  • The functionally graded materials (FGM) used in plates contain probably a porosity volume fraction which needs taking into account this aspect of imperfection in the mechanical bahavior of such structures. The present work aims to study the effect of the distribution forms of porosity on the bending of simply supported FG plate reposed on the Winkler-Pasternak foundation. A refined theory of shear deformation is developed to study the effect of the distribution shape of porosity on static behavior of FG plates. It was found that the distribution form of porosity significantly influence the mechanical behavior of FG plates, in terms of deflection, normal and shear stress. It can be concluded that the proposed theory is simple and precise for the resolution of the behavior of flexural FGM plates resting on elastic foundations while taking into account the shape of distribution of the porosity.

Analytical study of bending and free vibration responses of functionally graded beams resting on elastic foundation

  • Chaabane, Lynda Amel;Bourada, Fouad;Sekkal, Mohamed;Zerouati, Sara;Zaoui, Fatima Zohra;Tounsi, Abdeldjebbar;Derras, Abdelhak;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • 제71권2호
    • /
    • pp.185-196
    • /
    • 2019
  • In this investigation, study of the static and dynamic behaviors of functionally graded beams (FGB) is presented using a hyperbolic shear deformation theory (HySDT). The simply supported FG-beam is resting on the elastic foundation (Winkler-Pasternak types). The properties of the FG-beam vary according to exponential (E-FGB) and power-law (P-FGB) distributions. The governing equations are determined via Hamilton's principle and solved by using Navier's method. To show the accuracy of this model (HySDT), the current results are compared with those available in the literature. Also, various numerical results are discussed to show the influence of the variation of the volume fraction of the materials, the power index, the slenderness ratio and the effect of Winkler spring constant on the fundamental frequency, center deflection, normal and shear stress of FG-beam.

A dynamic foundation model for the analysis of plates on foundation to a moving oscillator

  • Nguyen, Phuoc T.;Pham, Trung D.;Hoang, Hoa P.
    • Structural Engineering and Mechanics
    • /
    • 제59권6호
    • /
    • pp.1019-1035
    • /
    • 2016
  • This paper proposes a new foundation model called "Dynamic foundation model" for the dynamic analysis of plates on foundation subjected to a moving oscillator. This model includes a linear elastic spring, shear layer, viscous damping and the special effects of mass density parameters of foundation during vibration. By using finite element method and the principle of dynamic balance, the governing equation of motion of the plate travelled by the oscillator is derived and solved by the Newmark's time integration procedure. The accuracy of the algorithm is verified by comparing the numerical results with the other numerical results in the literature. Also, the effects of mass and damping ratio of system components, stiffness of suspension system, velocity of moving oscillator, and dynamic foundation parameters on dynamic responses are investigated. A very important role of these factors will be shown in the dynamic behavior of the plate.

Analytical analysis for the forced vibration of CNT surrounding elastic medium including thermal effect using nonlocal Euler-Bernoulli theory

  • Bensattalah, Tayeb;Zidour, Mohamed;Daouadji, Tahar Hassaine
    • Advances in materials Research
    • /
    • 제7권3호
    • /
    • pp.163-174
    • /
    • 2018
  • This article studies the free and forced vibrations of the carbon nanotubes CNTs embedded in an elastic medium including thermal and dynamic load effects based on nonlocal Euler-Bernoulli beam. A Winkler type elastic foundation is employed to model the interaction of carbon nanotube and the surrounding elastic medium. Influence of all parameters such as nonlocal small-scale effects, high temperature change, Winkler modulus parameter, vibration mode and aspect ratio of short carbon nanotubes on the vibration frequency are analyzed and discussed. The non-local Euler-Bernoulli beam model predicts lower resonance frequencies. The research work reveals the significance of the small-scale coefficient, the vibrational mode number, the elastic medium and the temperature change on the non-dimensional natural frequency.

두 개의 매개변수로 표현되는 탄성지반 위에 놓인 낮은 아치의 최저차 대칭 및 역대칭 고유진동수 (Lowest Symmetrical and Antisymmetrical Natural Frequencies of Shallow Arches on Two-Parameter Elastic Foundations)

  • 오상진;서종원;이병구
    • 한국전산구조공학회논문집
    • /
    • 제15권2호
    • /
    • pp.367-377
    • /
    • 2002
  • 이 논문은 탄성지반 위에 놓인 낮은 아치의 자유진동에 관한 연구이다. Pasternak가 제안한 두 개의 매개변수로 표현되는 지반모형을 채택하여 대상아치의 자유진동을 지배하는 미분방정식을 유도하였다. 양단회전 및 양단고정의 단부 조건을 갖는 두 종류의 아치선형을 유도된 지배방정식에 적용하여 Galerkin method로 해석함으로써 최저차 대칭 및 역대칭 고유진동수 방정식을 산출하였다 아치높이, Winkler지반계수 및 전단지반계수가 고유진동수에 미치는 영향을 분석하였으며, 아치선형이 고유진동수에 미치는 영향을 분석하였다.

On the effect of the micromechanical models on the free vibration of rectangular FGM plate resting on elastic foundation

  • Mahmoudi, Abdelkader;Benyoucef, Samir;Tounsi, Abdelouahed;Benachour, Abdelkader;Bedia, El Abbas Adda
    • Earthquakes and Structures
    • /
    • 제14권2호
    • /
    • pp.117-128
    • /
    • 2018
  • In this research work, free vibrations of simply supported functionally graded plate resting on a Winkler-Pasternak elastic foundation are investigated by a new shear deformation theory. The influence of alternative micromechanical models on the macroscopic behavior of a functionally graded plate based on shear-deformation plate theories is examined. Several micromechanical models are tested to obtain the effective material properties of a two-phase particle composite as a function of the volume fraction of particles which continuously varies through the thickness of a functionally graded plate. Present theory exactly satisfies stress boundary conditions on the top and the bottom of the plate. The energy functional of the system is obtained using Hamilton's principle. The closed form solutions are obtained by using Navier technique, and then fundamental frequencies are found by solving the results of eigenvalue problems. Finally, the numerical results are provided to reveal the effect of explicit micromechanical models on natural fundamental frequencies.

두 파라미터 탄성기초를 갖는 테이퍼진 티모센코 보의 진동 및 안정성 (Vibration and Stability of Tapered Timoshenko Beams on Two-Parameter Elastic Foundations)

  • 류봉조;임경빈;윤충섭;류두현
    • 소음진동
    • /
    • 제10권6호
    • /
    • pp.1075-1082
    • /
    • 2000
  • 본 논문은 이중 탄성기초 위에 놓인 테이퍼진 티모센코 보의 진동과 동적 안정성에 대한 연구로써, 이중 탄성기초는 지반모델에서 흔히 이용되는 분포 Winkler 스프링들과 전단기초층으로 구성된다. 보의 전단변형과 회전관성이 고려되고, 지배방정식은 Halmilton원리를 이용한 에너지 표현식에 의해 유도된다. 고유진동수와 좌굴하중을 구하기 위해 관계되는 고유치 문제를 풀며, 출력을 받는 보의 진동에 대한 수치해석결과들이 제시되는 다른 방법을 사용한 유용한 해의 결과들과 비교된다. 출력을 받고 탄성기초 위에 놓인 테이퍼진 티모센코 보의 고유진동수, 모드 형상, 그리고 임계하중 값들이 다양한 테이퍼 두께의 비, 전단기초 파라미터, Winkler 기초파라미터, 경계조건의 변화에 대해 조사된다.

  • PDF