Browse > Article
http://dx.doi.org/10.12989/sem.2018.65.3.213

Using fourth order element for free vibration parametric analysis of thick plates resting on elastic foundation  

Ozdemir, Y.I. (Department of Civil Engineering, Karadeniz Technical University)
Publication Information
Structural Engineering and Mechanics / v.65, no.3, 2018 , pp. 213-222 More about this Journal
Abstract
The purpose of this paper is to study free vibration analysis of thick plates resting on Winkler foundation using Mindlin's theory with shear locking free fourth order finite element, to determine the effects of the thickness/span ratio, the aspect ratio, subgrade reaction modulus and the boundary conditions on the frequency paramerets of thick plates subjected to free vibration. In the analysis, finite element method is used for spatial integration. Finite element formulation of the equations of the thick plate theory is derived by using higher order displacement shape functions. A computer program using finite element method is coded in C++ to analyze the plates free, clamped or simply supported along all four edges. In the analysis, 17-noded finite element is used. Graphs are presented that should help engineers in the design of thick plates subjected to earthquake excitations. It is concluded that 17-noded finite element can be effectively used in the free vibration analysis of thick plates. It is also concluded that, in general, the changes in the thickness/span ratio are more effective on the maximum responses considered in this study than the changes in the aspect ratio.
Keywords
free vibration parametric analysis; thick plate; Mindlin's theory; fourth order finite element; Winkler foundation;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Woo, K.S., Hong, C.H., Basu, P.K. and Seo, C.G. (2003), "Free vibration of skew Mindlin plates by p-version of F.E.M.", J. Sound Vibr., 268, 637-656.   DOI
2 Zienkiewich, O.C., Taylor, R.L. and Too, J.M. (1971), "Reduced integration technique in general analysis of plates and shells", J. Numer. Meth. Eng., 3, 275-290.   DOI
3 Ayvaz, Y. and Durmus, A. (1995), "Earhquake analysis of simply supported reinforced concrete slabs", J. Sound Vibr., 187(3), 531-539.   DOI
4 Bathe, K.J. (1996), Finite Element Procedures, Prentice Hall, Upper Saddle River, New Jersey, U.S.A.
5 Caldersmith, G.W. (1984), "Vibrations of orthotropic rectangular plates", ACUSTICA, 56, 144-152.
6 Belounar, L. and Guenfound, M. (2005), "A new rectangular finite element based on the strain approach for plate bending", Thin-Wall. Struct., 43, 47-63.   DOI
7 Bergan, P.G. and Wang, X. (1984), "Quadrilateral plate bending elements with shear deformations", Comput. Struct., 19(1-2) 25-34.   DOI
8 Brezzi, F. and Marini, L.D. (2003), "A nonconforming element for the Reissner-Mindlin plate", Comput. Struct., 81, 515-522.   DOI
9 Cen, S., Long, Y.Q., Yao, Z.H. and Chiew, S.P. (2006), "Application of the quadrilateral area co-ordinate method: Anew element for Mindlin-Reissner plate", J. Numer. Meth. Eng., 66, 1-45.   DOI
10 Cook, R.D., Malkus, D.S. and Michael, E.P. (1989), Concepts and Applications of Finite Element Analysis, John Wiley & Sons, Inc., Canada.
11 Fallah, A., Aghdam, M.M. and Kargarnovin, M.H. (2013), "Free vibration analysis of moderately thick functionally graded plates on elastic foundation using the extended Kantorovich method", Arch. Appl. Mech., 83(2), 177-191.   DOI
12 Grice, R.M. and Pinnington, R.J. (2002), "Analysis of the flexural vibration of a thin-plate box using a combination of finite element analysis and analytical impedances", J. Sound Vibr., 249(3), 499-527.   DOI
13 Gunagpeng, Z., Tianxia, Z. and Yaohui, S. (2012), "Free vibration analysis of plates on Winkler elastic foundation by boundary element method", Opt. Electr. Mater. Appl. II, 529, 246-251.
14 Hinton, E. and Huang, H.C. (1986), "A family of quadrilateral Mindlin plate element with substitute shear strain fields", Comput. Struct., 23(3), 409-431.   DOI
15 Leissa, A.W. (1981), "Plate vibration research, 1976-1980: complicating effects", Shock Vibr. Dig., 13(10) 19-36.
16 Hughes, T.J.R., Taylor, R.L. and Kalcjai, W. (1977), "Simple and efficient element for plate bending", J. Numer. Meth. Eng., 11, 1529-1543.   DOI
17 Jahromim, H.N., Aghdam, M.M. and Fallah, A. (2013), "Free vibration analysis of Mindlin plates partially resting on Pasternak foundation", J. Mech. Sci., 75, 1-7.   DOI
18 Leissa, A.W. (1973), "The free vibration of rectangular plates", J. Sound Vibr., 31(3), 257-294.   DOI
19 Leissa, A.W (1987), "Plate vibration research, 1981-1985-part II: Complicating effects", Shock Vibr. Dig., 19(3), 10-24.   DOI
20 Leissa, A.W. (1977), "Recent research in plate vibrations, 1973-1976: Complicating effects", Shock Vibr. Dig., 9(11), 21-35.   DOI
21 Leissa, A.W. (1977), "Recent research in plate vibrations", 1973-1976: classical theory, Shock Vibr. Dig., 9(10), 13-24.   DOI
22 Leissa, A.W. (1981), "Plate vibration research, 1976-1980: Classical theory", Shock Vibr. Dig., 13(9), 11-22.   DOI
23 Leissa, A.W. (1987), "Plate vibration research, 1981-1985-part I: Classical theory", Shock Vibr. Dig., 19(2), 11-18.   DOI
24 Lok, T.S. and Cheng, Q.H. (2001), "Free and forced vibration of simply supported, orthotropic sandwich panel", Comput. Struct., 79(3), 301-312.   DOI
25 Mindlin, R.D. (1951), "Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates", J. Appl. Mech., 18(1), 31-38.
26 Ozdemir, Y.I. (2012), "Development of a higher order finite element on a Winkler foundation", Fin. Elem. Anal. Des., 48, 1400-1408.   DOI
27 Ozgan, K. and Daloglu, A.T. (2015), "Free vibration analysis of thick plates resting on Winkler elastic foundation", Chall. J. Struct. Mech., 1(2), 78-83.
28 Ozdemir, Y.I. and Ayvaz, Y. (2009), "Shear locking-free earthquake analysis of thick and thin plates using Mindlin's theory", Struct. Eng. Mech., 33(3), 373-385.   DOI
29 Ozdemir, Y.I., Bekiroglu, S. and Ayvaz, Y. (2007), "Shear locking-free analysis of thick plates using Mindlin's theory", Struct. Eng. Mech., 27(3), 311-331.   DOI
30 Ozgan, K. and Daloglu, A.T. (2012), "Free vibration analysis of thick plates on elastic foundations using modified Vlasov model with higher order finite elements", J. Eng. Mater. Sci., 19, 279-291.
31 Ozkul, T.A. and Ture, U. (2004), "The transition from thin plates to moderately thick plates by using finite element analysis and the shear locking problem", Thin-Wall. Struct., 42, 1405-1430.   DOI
32 Providakis, C.P. and Beskos, D.E. (1989), "Free and forced vibrations of plates by boundary and interior elements", J. Numer. Meth. Eng., 28, 1977-1994.   DOI
33 Providakis, C.P. and Beskos, D.E. (1989), "Free and forced vibrations of plates by boundary elements", Comput. Meth. Appl. Mech. Eng., 74, 231-250.   DOI
34 Qian, R.C., Batra, L.M. and Chen. (2003), "Free and forced vibration of thick rectangular plates using higher-order shear and normal deformable plate theory and meshless Petrov-Galerkin (MLPG) method", Comput. Model. Eng. Sci., 4(5), 519-534.
35 Raju, K.K. and Hinton, E. (1980), "Natural frequencies and modes of rhombic Mindlin plates", Earhq. Eng. Struct. Dyn., 8, 55-62.   DOI
36 Reissner, E. (1945), "The effect of transverse shear deformation on the bending of elastic plates", J. Appl. Mech., 12, A69-A77.
37 Shen, H.S., Yang, J. and Zhang, L. (2001), "Free and forced vibration of Reissner-Mindlin plates with free edges resting on elastic foundation", J. Sound Vibr., 244(2), 299-320.   DOI
38 Reissner, E. (1947), "On bending of elastic plates", Quarter. Appl. Math., 5(1), 55-68.   DOI
39 Reissner, E. (1950), "On a variational theorem in elasticity", J. Math. Phys., 29, 90-95.   DOI
40 Sakata, T. and Hosokawa, K. (1988), "Vibrations of clamped orthotropic rectangular plates", J. Sound Vibr., 125(3), 429-439.   DOI
41 Si, W.J., Lam, K.Y. and Gang, S.W. (2005), "Vibration analysis of rectangular plates with one or more guided edges via bicubic B-spline method", Shock Vibr., 12(5).
42 Soh, A.K., Cen, S., Long, Y. and Long, Z. (2001), "A new twelve DOF quadrilateral element for analysis of thick and thin plates", Eur. J. Mech. A/Sol., 20, 299-326.   DOI
43 Tedesco, J.W., McDougal, W.G. and Ross, C.A. (1999), Structural Dynamics, Addison Wesley Longman Inc., California, U.S.A.
44 Ugural, A.C. (1981), Stresses in Plates and Shells, McGraw-Hill, New York, U.S.A.
45 Wanji, C. and Cheung, Y.K. (2000), "Refined quadrilateral element based on Mindlin/Reissner plate theory", J. Numer. Meth. Eng., 47, 605-627.   DOI
46 Warburton, G.B. (1954), "The vibration of rectangular plates", Proceedings of the Institude of Mechanical Engineers, 168, 371-384.   DOI
47 Weaver, W. and Johnston, P.R. (1984), Finite Elements for Structural Analysis, Prentice Hall, Inc., Englewood Cliffs, New Jersey, U.S.A.