Browse > Article
http://dx.doi.org/10.12989/sem.2020.75.1.109

Static analysis of multiple graphene sheet systems in cylindrical bending and resting on an elastic medium  

Wu, Chih-Ping (Department of Civil Engineering, National Cheng Kung University)
Lin, Chih-Chen (Department of Civil Engineering, National Cheng Kung University)
Publication Information
Structural Engineering and Mechanics / v.75, no.1, 2020 , pp. 109-122 More about this Journal
Abstract
An asymptotic local plane strain elasticity theory is reformulated for the static analysis of a simply-supported, multiple graphene sheet system (MGSS) in cylindrical bending and resting on an elastic medium. The dimension of the MGSS in the y direction is considered to be much greater than those in the x and z directions, such that all the field variables are considered to be independent of the y coordinate. Eringen's nonlocal constitutive relations are used to account for the small length scale effects in the formulation examining the static behavior of the MGSS. The interaction between the MGSS and its surrounding foundation is modelled as a Winkler foundation with the parameter kw, and the interaction between adjacent graphene sheets (GSs) is considered using another Winkler model with the parameter cw. A parametric study with regard to some effects on the static behavior of the MGSS resting on an elastic medium is undertaken, such as the aspect ratio, the number of the GSs, the stiffness of the medium between the adjacent layers and that of the surrounding medium of the MGSS, and the nonlocal parameter.
Keywords
Eringen's nonlocal elasticity theory; foundation; multiple graphene sheet systems; nonlocal plane strain elasticity theory; static; the perturbation method;
Citations & Related Records
Times Cited By KSCI : 12  (Citation Analysis)
연도 인용수 순위
1 Kippenberg, T.J. and Vahala, K.J. (2007), "Cavity opto-mechanics", Opt. Express 15(25), 17172-17205. https://doi.org/10.1364/OE.15.017172.   DOI
2 Kuila, T, Bose, S., Khanra, P., Mishra, A.K., Kim, N.H. and Lee, J.H. (2011), "Recent advances in graphene-based biosensors", Biosensors Bioelectronics 26(12), 4637-4648. https://doi.org/10.1016/j.bios.2011.05.039.   DOI
3 Metcalfe, M. (2014), "Applications of cavity optomechanics", Appl. Phys. Rev., 1, 031105 (18 pages). https://doi.org/10.1063/1.4896029.   DOI
4 Mindlin, R.D. (1951), "Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates", J. Appl. Mech., 44, 669-676.   DOI
5 Murmu, T. and Adhikari, S. (2010), "Nonlocal transverse vibration of double-nanobeam-systems", J. Appl. Phys. 108, 083514 (9 pages). https://doi.org/10.1063/1.3496627.   DOI
6 Naderi, A. and Saidi, A.R. (2014), "Nonlocal postbuckling analysis of graphene sheets in a nonlinear polymer medium", Int. J. Eng. Sci., 81, 49-65. https://doi.org/10.1016/j.ijengsci.2014.04.004.   DOI
7 Naderi, A. and Saidi, A.R. (2014), "Modified nonlocal Mindlin plate theory for buckling analysis of nanoplates", J. Nanomech. Micromech., 4(4), A4013015 (8 pages). https://doi.org/10.1061/(ASCE)NM.2153-5477.0000068.   DOI
8 Navazi, H.M. and Haddadpour, H. (2008), "Nonlinear cylindrical bending analysis of shear deformable functionally graded plates under different loadings using analytical methods", Int. J. Mech. Sci., 50(12), 1650-1657. https://doi.org/10.1016/j.ijmecsci.2008.08.010.   DOI
9 Nayfeh, A.H. (1993), Introduction to Perturbation Techniques, John Wiley & Sons, Inc., New York.
10 Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A. (2004), "Electric field effect in atomically thin carbon films", Science, 306, 666-669. https://doi.org/10.1126/science.1102896.   DOI
11 Yengejeh, S.I., Kazemi, S.A. and Ochsner, A. (2017), "Carbon nanotubes as reinforcement in composites: A review of the analytical, numerical and experimental approaches", Comput. Mater. Sci., 136, 85-101. https://doi.org/10.1016/j.commatsci.2017.04.023.   DOI
12 Eringen, A.C., Edelen, D.G.B. (1972), "On nonlocal elasticity", Int. J. Eng. Sci., 10(3), 233-248. https://doi.org/10.1016/0020-7225(72)90039-0.   DOI
13 Pagano, N.J. (1969), "Exact solutions for composite laminates in cylindrical bending", J. Compos. Mater., 3, 398-411. https://doi.org/10.1177/002199836900300304.   DOI
14 Park, J. and Lee, S.Y. (2003), "A new exponential plate theory for laminated composites under cylindrical bending", Trans. Japan Soc. Aero. Space Sci., 46(152), 89-95. https://doi.org/10.2322/tjsass.46.89.   DOI
15 Pradhan, S.C., Phadikar, J.K. (2009), "Nonlocal elasticity theory for vibration of nanoplates", J. Sound Vib., 325, 206-223. https://doi.org/10.1016/j.jsv.2009.03.007.   DOI
16 Pumera, M., Ambrosi, A., Bonanni, A., Chng, E.L.K. and Poh, H.L. (2010), "Graphene for electrochemical sensing and biosensing", Trends Analyt. Chem. 29(9), 954-965. https://doi.org/10.1016/j.trac.2010.05.011.   DOI
17 Rajabi, K. and Hosseini-Hashemi, Sh. (2017a), "On the application of viscoelastic orthotropic double-nanoplates systems as nanoscale mass-sensors via the generalized Hooke's law for viscoelastic materials and Erigen's nonlocal elasticity theory", Compos. Struct. 180, 105-115. https://doi.org/10.1016/j.compstruct.2017.07.085.   DOI
18 Reddy, J.N. (2010), "Nonlocal nonlinear formulations for bending of classical and shear deformation theories of beams and plates", Int. J. Eng. Sci., 48, 1507-1518. https://doi.org/10.1016/j.ijengsci.2010.09.020.   DOI
19 Rajabi, K. and Hosseini-Hashemi, Sh. (2017b), "A new nanoscale mass sensor based on a bilayer graphene nanoribbon: The effect of interlayer shear on frequencies shift", Comput. Mater. Sci., 126, 468-473. https://doi.org/10.1016/j.commatsci.2016.08.052.   DOI
20 Reddy, J.N. (1984), "A simple higher order theory for laminated composite plates", J. Appl. Mech., 51(4), 745-752. https://doi.org/10.11115/1.3167719.   DOI
21 Sayyad, A.S., Ghugal, Y.M. (2016), "Cylindrical bending of multilayered composite laminates and sandwiches", Adv. Aircraft Spacecraft Sci., 3(2), 113-148. https://doi.org/10.12989/aas.2016.3.2.113.   DOI
22 Bakshi, S.R., Lahiri, D. and Agarwal, A. (2010), "Carbon nanotube reinforced metal matrix composites-a review", Int. Mater. Rev., 55(1), 41-64. https://doi.org/10.1179/095066009x12572530170543.   DOI
23 Aghababaei, R., Reddy, J. N. (2009), "Nonlocal third-order shear deformation plate theory with application to bending and vibration of plates", J. Sound Vib., 326(1-2), 277-289. https://doi.org/10.1016/j.jsv.2009.04.044.   DOI
24 Anjomshoa, A., Shahidi, A.R., Hassani, B. and Jomehzadeh, E. (2014), "Finite element buckling analysis of multi-layered graphene sheets on elastic substrate based on nonlocal elasticity theory", Appl. Math. Modell., 38, 5934-3955. https://doi.org/10.1016/j.apm.2014.03.036   DOI
25 Arani, A.G., Shiravand, A., Rahi, M. and Kolahchi, R. (2012), "Nonlocal vibration of coupled DLGS systems embedded on visco-Pasternak foundation", Physica B, 407(21), 4123-4131. https://doi.org/10.1016/j.physb.2012.06.035.   DOI
26 Belkorissat, I., Houari, M.S.A., Tounsi, A., Bedia, E.A.A. and Mahmoud, S.R. (2015), "On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model", Steel Compos. Struct., 18(4), 1063-1081. https://doi.org/10.12989/scs.2015.18.4.1063.   DOI
27 Bessaim, A., Houari, M.S.A., Bernard, F. and Tounsi, A. (2015), "A nonlocal quasi-3D trigonometric plate model for free vibration behavior of micro/nanoscale plates", Struct. Eng. Mech., 56(2), 223-240. https://doi.org/10.12989/sem.2015.56.2.223.   DOI
28 Sayyad, A.S., Ghumare, S.M. and Sasane, S.T. (2014), "Cylindrical bending of orthotropic plate strip based on nth-order plate theory", J. Mater. Eng. Struct., 1, 47-57.
29 Besseghier, A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2017), "Free vibration analysis of embedded nanosize FG plates using a new nonlocal trigonometric shear deformation theory", Smart Struct. Syst. 19(6), 601-614. https://doi.org/10.12989/sss.2017.19.6.601.   DOI
30 Bounouara, F., Benrahou, K.H., Belkorissat, I. and Tounsi, A. (2016), "A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation", Steel Compos. Struct., 20(2), 227-249. https://doi.org/10.12989/sss.2016.20.2.227.   DOI
31 She, G.L., Yuan, F.G. and Ren, Y.R. (2017), "Research on nonlinear bending behaviors of FGM infinite cylindrical shallow shells resting on elastic foundations in thermal environments", Compos. Struct., 170, 111-121. https://doi.org/10.1016/j.compstruct.2017.03.010.   DOI
32 Sobhy, M. (2017), "Hygro-thermo-mechanical vibration and buckling of exponentially graded nanoplates resting on elastic foundations via nonlocal elasticity theory", Struct. Eng. Mech., 63(3), 401-415. https://doi.org/10.12989/sem.2017.63.3.401.   DOI
33 Wu, C.P. and Chen, Y.J. (2019), "Cylindrical bending vibration of multiple graphene sheet systems embedded in an elastic medium", Int. J. Struct. Stab. Dyn., 19(3), 1950035 (27 pages). https://doi.org/10.1142/S0219455419500354.   DOI
34 Thai, H.T. (2012), "A nonlocal beam theory for bending, buckling, and vibration of nanobeams", Int. J. Eng. Sci., 52, 56-64. https://doi.org/10.1016/j.ijengsci.2011.11.011.   DOI
35 Thai, H.T., Vo, T.P. (2012), "A nonlocal sinusoidal shear deformation beam theory with application to bending, buckling, and vibration of nanobeams", Int. J. Eng. Sci., 54, 58-66. https://doi.org/10.1016/j.ijengsci.2012.01.009.   DOI
36 Thai, H.T., Vo, T.P., Nguyen, T.K. and Lee, J. (2014), "A nonlocal sinusoidal plate model for micro/nanoscale plates", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 228, 2652-2660. https://doi.org/10.1177/0954406214521391.   DOI
37 Yazid, M., Heireche, H., Tounsi, A., Bousahla, A.A. and Houari, M.S.A. (2018), "A novel nonlocal refined plate theory for stability response of orthotropic single-layer graphene sheet resting on elastic medium", Smart Struct. Syst. 21(1), 15-25. https://doi.org/10.12989/sss.2018.21.1.015.   DOI
38 Fahsi, B., Kaci, A., Tounsi, A., Bedia, E.A.A. (2012), "A four variable refined plate theory for nonlinear cylindrical bending analysis of functionally graded plates under thermomechanical loadings", J. Mech. Sci. Technol., 26(12), 4073-4079. https://doi.org/10.1007/s12206-012-0907-4   DOI
39 Eringen, A.C. (1972), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10(1), 1-16. https://doi.org/10.1016/0020-7225(72)90070-5.   DOI
40 Eringen, A.C. (2002), Nonlocal Continuum Field Theories, Springer-Verlag, New York.
41 Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nature, 354, 56-58.   DOI
42 Jomehzadeh, E. and Saidi, A.R. (2011), "Decoupling the nonlocal elasticity equations for three dimensional vibration analysis of nano-plates", Compos. Struct., 93, 1015-1020. https://doi.org/10.1016/j.compstruct.2010.06.017.   DOI
43 Karlicic, D., Kozic, P., Adhikari, S., Cajic, M., Murmu, T. and Lazarevic, M. (2015), "Nonlocal mass-nanosensor model based on the damped vibration of single-layer graphene sheet influenced by in-plane magnetic field", Int. J. Mech. Sci., 96-97, 132-142. https://doi.org/10.1016/j.ijmecsci.2015.03.014.   DOI
44 Karlicic, D., Kozic, P. and Pavlovic, R. (2016), "Nonlocal vibration and stability of a multiple-nanobeam system coupled by the Winkler elastic medium", Appl. Math. Modell. 40(2), 1599-1614. https://doi.org/10.1016/j.apm.2015.06.036.   DOI
45 Khaniki, H.B. (2018), "On vibrations of nanobeam systems", Int. J. Eng. Sci. 124, 85-103. https://doi.org/10.1016/j.ijengsci.2017.12.010.   DOI
46 Khetir, H., Bouiadjra, M.B., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2017), "A new nonlocal trigonometric shear deformation theory for thermal buckling analysis of embedded nanosize FG plates", Struct. Eng. Mech., 64(4), 391-402. https://doi.org/10.12989/sem.2017.64.4.391.   DOI