• Title/Summary/Keyword: winding deformation

Search Result 45, Processing Time 0.025 seconds

The Characteristic of Temperature in Ventilating Fans by Festraint or Nonrestraint (무 구속·구속 실험에 의한 환풍기 온도 특성)

  • Kim, Sung-Sam
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.30 no.1
    • /
    • pp.44-48
    • /
    • 2016
  • In this paper, we analyzed the operating characteristics of a ventilating fan due to overload and overheating. The experiment assumed the forcible restraint of the blade due to external objects and the aging process. We analyzed the experimental temperature and operating characteristics of the three places in the interior of the ventilating fan. As a result of the analysis, the temperature distribution was highest to lowest in the following order: the thermal fuse, the motor inside, and the above winding. There was smell of burning enamel in the restraint experiment. Following the thermal fuse operation, the insulation of motor winding was good. In the case of rated voltage and new ventilating fan restrained for about 4hours, and the results of restraint experiments in the presence or absence of the thermal fuse, no risk of deformation or fire due to overheating was identified. Henceforward, ignition hazard experiments will be required for additional factors of aging, pollution, and defective insulation.

Feasibility study on corrosion monitoring of a concrete column with central rebar using BOTDR

  • Sun, Yijie;Shi, Bin;Chen, Shen-En;Zhu, Honghu;Zhang, Dan;Lu, Yi
    • Smart Structures and Systems
    • /
    • v.13 no.1
    • /
    • pp.41-53
    • /
    • 2014
  • Optical fiber Brillouin sensor in a coil winding setup is proposed in this paper to measure the expansion deformation of a concrete column with a central rebar subjected to accelerated corrosion. The optical sensor monitored the whole dynamic corrosion process from initial deformation to final cracking. Experimental results show that Brillouin Optical Time Domain Reflectometer (BOTDR) can accurately measure the strain values and identify the crack locations of the simulated reinforced concrete (RC) column. A theoretical model is used to calculate the RC corrosion expansive pressure and crack length. The results indicate that the measured strain and cracking history revealed the development of the steel bar corrosion inside the simulated RC column.

A Study on the Nonlinear Structural Behavior of a High-Pressure Filament Wound Composite Vessel (소형 복합재료 고압력 용기에 대한 비선형적 구조거동에 관한 연구)

  • 황경정;박지상;정재한;김태욱
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.10-14
    • /
    • 2002
  • Structural behavior of high-pressure composite vessels of TYPE 3 (full-wrapped over a seamless aluminum liner) was studied through numerical simulations based on 3D nonlinear finite element method. Under high-pressure loading, a TYPE 3 composite vessel shows material nonlinearity due to elastic-plastic deformation of aluminum liner, and mismatch of deformation at the junction of cylinder and dome causes geometrical nonlinearity. Finite element modeling and analysis technique considering this nonlinearity was presented, and a pressure vessel of 6.8L of internal volume was analyzed. Design specification to satisfy requirements was determined based on analysis results.

  • PDF

The properties of hybrid FRP rebar for concrete structures (콘크리트 보강용 하이브리드 FRP 리바의 특성)

  • 원종필;박찬기;황금식;윤종환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.255-260
    • /
    • 2003
  • The corrosion of steel rebars has been the major cause of the reinforced concrete deterioration. It is FRP rebar that is developed to solve problem of such steel rebar. FRP rebar in concrete structures should be used as a substitute of steel rebars for that cases in which aggressive environment produce high steel corrosion, or lightweight is an important design factor, or transportation cost increase significantly with the weight of the materials. But FRP rebar have only linearly elastic behavior; whereas, steel rebar has linear elastic behavior up to the yield point followed by large plastic deformation and strain hardening. Thus, the current FRP rebars are not suitable concrete reinforcement where a large amount of plastic deformation prior to collapse in required. The main objective of this study was to develop new type of hybrid FRP rebar. The manufacture of the hybrid FRP rebar was achieved pultrusion, braiding and filament winding techniques. Tensile and interlaminar shear test results of hybrid FRP rebar can provide its excellent tensile strength-strain behavior and interlaminar stress-strain behavior.

  • PDF

Effect of Epoxy Cracking on Initial Quench Behavior about High Field Superconducting Magnet

  • Lee, B.S.;Kim, D.L.;Choi, Y.S.;Yang, H.S.;Yoo, J.S.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.8 no.4
    • /
    • pp.26-29
    • /
    • 2006
  • The study to be presented related on initial behavior of quench concerned with many considerations, such as epoxy impregnated coil, critical current density related on strain and temperature, winding effect and behavior of internal superconducting wire. Especially, the deformation behavior of coils under magnetic field and thermal contractions at cryogenic temperatures to be dealt with the analytical method related on Fracture Mechanics. From the results, we know that the strain by self weight contribute to epoxy cracking at the edge of deformed coils and the deformation behavior relate on epoxy cracking must be dealt with biaxial loading problem. Then, the epoxy crack on $r\theta-plane$ under biaxial loading have been propagated with inclined crack angle and joined superconducting wire. Also, we can explain transfer of epoxy crack propagation energy from epoxy resin to superconducting wire.

The Flexural Behavior of a Circular Concrete Filled Carbon Tube Columns under the Constant Axial Force with Reversed Cyclic Lateral Load (축하중과 반복 횡하중을 받는 콘크리트 충진 원형 탄소섬유 튜브 기둥의 휨거동특성)

  • Hong, Won-Kee;Kim, Hee-Cheul;Chung, Jin-Hun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.3
    • /
    • pp.13-22
    • /
    • 2004
  • The purpose of this study is to investigate the flexural behavior of circular concrete filled carbon tube(CFCT) columns subjected to constant axial load with the cyclic lateral load. Six numbers of composite columns were tested. Two parameters, winding angle and thickness of tube, were chosen to evaluate the flexural capacity and behavior of CFCT columns. Selected two parameters were considered simultaneously in order to evaluate the flexural behavior of CFCT columns more precisely. Flexural strength, deformation capacity, ductility and energy dissipation capacity of CFCT columns were evaluated by calculating the area of load-displacement envelop curves and load-displacement hysteresis curves obtained from experiment. Also, the ductile capacity obtained from experiment were compared to that of reinforced masonry wall for the comparison of existing structural element.

Development of Optimum Shape Forming Technology of Angle Ring and Cap for 154kV transformer Insulation (154kV급 변압기절연물 앵글링과 캡의 최적성형 기술 개발)

  • Suh, Wang-Byuck;Kim, Jong-Won;Jang, Sung-Ju;Ryu, Jung-Soo;Bae, Dong-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.30-30
    • /
    • 2010
  • The Angle Ring and Cap which is called pressboard are settled at primary and secondary coil winding of 154 kV transformer that can reduce effectively distance of insulation. As it has not manufactured pressboard of Angle Ring and Cap for high voltage grade, insulation components industry especially high voltage transformer has not participate in a competition with worldwide yet. That's why is difficult to make an specialized shape of insulation components of high voltage grade. At first, it is very important to make an utility of deformation manufacturing for high voltage transformer insulation components by itself. Therefore it has finally completed to make an deformation manufacturing utility using an special analysis tools. In this paper, developed insulation components was investigates in tensile strength is introduced.

  • PDF

KSR-III 복합재 가압탱크의 설계 및 제작

  • Kong, Cheol-Won;Yoon, Chong-Hoon;Jang, Young-Soon;Yi, Yeong-Moo
    • Aerospace Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.124-132
    • /
    • 2003
  • This paper described the structural design and the fabrication procedure of KSR-III composite pressure tank. The type of the composite pressure tank was COPV(Composite Overwrapped Pressure Vessel). A non-load sharing liner was made of aluminum 6061-0 and the liner provided a helium gas seal. The composite pressure tank was winded using T700 carbon/epoxy on the liner. Because the aluminum liner was thin, multiple cure cycles were applied to the filament winding technique. The multiple cure cycles prevented the liner-cylinder from losing a circular shape. A fitting force at the metallic boss was spread to the carbon fiber by a boss ring. The boss ring also prevented a local deformation at the boss part.

  • PDF

Capacity of Concrete Filled Carbon Tube Columns Based on the Comparison of Ductility and Energy Dissipation Capacity (연성도 및 에너지 소산능력 비교에 따른 콘크리트충전 탄소섬유튜브 기둥의 성능)

  • Lee, Kyoung-Hun;Hong, Won-Kee;Lee, Young-Hak;Kim, Hee-Cheul
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.1 s.53
    • /
    • pp.29-35
    • /
    • 2007
  • Flexural capacity estimation test of concrete filled carbon tube (CFCT) column under the cyclic lateral load was carried out in this study. Thickness of carbon tube and winding angles of carbon fiber were chosen as test parameters and two types of column with square and circular sections were manufactured. To act axial and lateral load, three dynamic actuators were used and all specimens were made with actual size. Flexural stiffness, ability of deformation, energy dissipation capacity and ductility behavior. of CFCT column were analyzed with test data.

Analysis on Characteristics of Core and Winding Vibration in Cast Resin Transformer (몰드변압기 철심과 권선 진동 특성분석)

  • Kim, Chong-Min;Choi, Myung-Il;Kim, Young-Seog;Bang, Sun-Bae;Shong, Kil-Mok
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.10
    • /
    • pp.52-59
    • /
    • 2012
  • In this paper, The cast resin transformer's vibration is measured using noncontact raser vibrometer(LV110D). The vibration characteristics of transformer windings and core are analyzed for relation between vibration magnitude and cause. Using the analysis results, the technique is presented to diagnose cast resin transformer. which is able to diagnose transformer' deformation in winding and core geometry. The magnetostriction and electromagnetic force act on the core and windings, causing them to vibrate. The vibration from windings and core penetrates into transformer cast resin and reaches the outside walls. The fundamental frequency of the core and windings vibration signal is twice that of the power frequency(120Hz). The results show that the magnitude of core vibration is linear to driving voltage amplitude and magnitude of windings vibration is increased to loading current under the some level and then stabilized.