• Title/Summary/Keyword: winding

Search Result 2,086, Processing Time 0.026 seconds

A Study on the Design of Composites Shaft for Small Ship by Filament Winding Process (필라멘트 와인딩 공법에 의한 소형 선박용 복합재료 축 설계에 관한 연구)

  • 배창원;임철문;왕지석;김윤해
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2001.05a
    • /
    • pp.140-145
    • /
    • 2001
  • The purpose of this study is the design of composite shaft which is wound by Filament Winding method. Classical laminated plate theory was used for analyzing the stress, and for structure design. The diameter and thickness of composite shaft were calculated by this theory. The result that if tensile stress was zero, torsion stress was a certain value below 0.4(diameter rate) and torsion strength was the highest value on 45$^{\circ}$(winding angle). In case of 90$^{\circ}$(winding angle), we have to consider the torsional moment when the composites shaft was load.

  • PDF

Calculation of Winding Inductances for a Single-Phase Brushless DC Machine

  • Joo, Dae-Suk;Woo, Kyung-Il;Kim, Dae-Kyong
    • Journal of Magnetics
    • /
    • v.17 no.3
    • /
    • pp.196-199
    • /
    • 2012
  • This paper presents the analytical calculation of winding inductance for a single-phase brushless DC machine based on the magnetic circuit concept. The machine is used in the low power range of applications, such as ventilation fans, due to its simplicity and low cost. Since flux linkage is proportional to inductance, the calculation of winding inductance is of central importance. By comparison with experimental and analytical values, it is shown that proposed analytical expression is able to effectively predict the winding inductance of single-phase brushless DC machines at the design stage.

Drive Characteristics of 2-Stage Commutated SRM with Auxiliary Winding

  • Lee, Dong-Hee;Ahn, Jin-Woo;Oh, Seok-Gyu;Park, Sung-Jun
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.11B no.4
    • /
    • pp.175-179
    • /
    • 2001
  • The switched reluctance drive exhibits higher levels of vibration and acoustic noise than that of most competing drives. The main source of vibration in the switched reluctance drive is generated by rapid change of radial force when phase current is extinguished by commutation action. A new excitation strategy for a Switched Reluctance Motor with Auxiliary Winding (SRMAW) is described and tested. This scheme has auxiliary winding with one diode which is sound to all th poles in one winding. In this scheme, auxiliary winding is used to reduce magnetic stress during commutations. The abrupt change of a phase excitation produces mechanical stresses and it results in vibration and noise. The acoustic noise is reduced remarkably through 2-stage commutation. The operational principle and a characteristic comparison to that of the conventional SRM show that this scheme has some advantages including noise reduction as well as high efficiency drive.

  • PDF

Current Limiting and Voltage Sag Compensation Characteristics of Flux-Lock Type SFCL Using a Transformer Winding (변압기 권선을 이용한 자속구속형 초전도 전류제한기의 전류제한 및 전압강하 보상 특성)

  • Ko, Seok-Cheol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.12
    • /
    • pp.1000-1003
    • /
    • 2012
  • The superconducting fault current limiter (SFCL) can quickly limit the fault current shortly after the short circuit occurs and recover the superconducting state after the fault removes and plays a role in compensating the voltage sag of the sound feeder adjacent to the fault feeder as well as the fault current limiting operation of the fault feeder. Especially, the flux-lock type SFCL with an isolated transformer, which consists of two parallel connected coils on an iron core and the isolated transformer connected in series with one of two coils, has different voltage sag compensating and current limiting characteristics due to the winding direction and the inductance ratio of two coils. The current limiting and the voltage sag compensating characteristics of a SFCL using a transformer winding were analyzed. Through the analysis on the short-circuit tests results considering the winding direction of two coils, the SFCL designed with the additive polarity winding has shown the higher limited fault current than the SFCL designed with the subtractive polarity winding. It could be confirmed that the higher fault current limitation of the SFCL could be contributed to the higher load voltage sag compensation.

A simulation study on the variation of virtual NMR signals by winding, bobbin, spacer error of HTS magnet

  • Kim, Junseong;Lee, Woo Seung;Kim, Jinsub;Song, Seunghyun;Nam, Seokho;Jeon, Haeryong;Baek, Geonwoo;Ko, Tae Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.3
    • /
    • pp.21-24
    • /
    • 2016
  • Recently, production technique and property of the High-Temperature Superconductor (HTS) tape have been improved. Thus, the study on applying an HTS magnet to the high magnetic field application is rapidly increased. A Nuclear Magnetic Resonance (NMR) spectrometer requires high magnitude and homogeneous of central magnetic field. However, the HTS magnet has fabrication errors because shape of HTS is tape and HTS magnet is manufactured by winding HTS tape to the bobbin. The fabrication errors are winding error, bobbin diameter error, spacer thickness error and so on. The winding error occurs when HTS tape is departed from the arranged position on the bobbin. The bobbin diameter and spacer thickness error occur since the diameter of bobbin and spacer are inaccurate. These errors lead magnitude and homogeneity of central magnetic field to be different from its ideal design. The purpose of this paper is to investigate the effect of winding error, bobbin diameter error and spacer thickness error on the central field and field homogeneity of HTS magnet using the virtual NMR signals in MATLAB simulation.

Current Limiting Characteristics of flux-lock Type High-lc Superconducting Fault Current Limiter According to fault Angles (사고각에 따른 자속구속형 전류제한기의 전류제한특성)

  • Park, Hyoung-Min;Choi, Hyo-Sang;Cho, Yong-Sun;Lim, Sung-Hun;Park, Chung-Ryul;Han, Byoung-Sung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.8
    • /
    • pp.747-753
    • /
    • 2005
  • We Investigated the current limiting characteristics of the flux-lock type superconducting fault current limiter(SFCL) by fault angles. The flux-lock type SFCL consists of the primary and the secondary copper coils wound in parallel through the iron core and YBCO thin film. In this paper, the current limiting characteristics of the flux-lock type SFCL by fault angles in case of the subtractive and the additive polarity windings were compared and analyzed. The flux-lock type SFCL limited fault current more quickly as the fault angles increased. On the other hand, the initial power burden of the superconducting element during the fault increased as the fault angles increased. In addition, we found that the resistance of the flux-lock type SFCL in case of the subtractive polarity winding was more increased than that of the additive polarity winding. The peak current of the fault current in case of the subtractive polarity winding was larger than that of the additive polarity winding.

Magnetic Field Analysis of 1 MVA HTS Transformer Windings

  • Park, Chan-Bae;Kim, Woo-Seok;Lee, Sang-Jin;Han, Jin-Ho;Park, Kyeong-Dal;Joo, Hyeong-Gil;Hong, Gye-Won;Hahn, Song-Yop
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.1
    • /
    • pp.66-70
    • /
    • 2003
  • In a HTS transformer, the perpendicular component of magnetic flux density ($B_r$) applied to HTS tapes of pancake windings becomes larger than that of solenoid winding, thereby decreasing the critical current in the HTS tapes. This paper introduces several methods to reduce $B_r$ applied to the HTS tapes in the transformer with double pancake windings by changing winding arrangements and the relative permeability of flux diverters. We have conducted a winding design for a single-phase 1MVA 22.9kV/6.6kV HTS transformer. We observed a change of $B_r$ due to a variation of gap-length between the high voltage windings and the low voltage windings, reciprocal arrangement and an increase of the number of the high voltage pancake. We also observed a change of Br on the HTS tapes due to variation of the relative permeability of flux diverters placed between the high voltage winding and the low voltage winding. Finally, we have designed a 1MVA 22.9kV/6.6kV HTS transformer winding using suggested methods and calculated transformer parameters by the 3D finite element method.

The development of LVI tester for application of transformers winding deformation diagnosis (변압기 권선변형 진단에 적용하기 위한 LVI 시험기 개발)

  • 조국희;김광화
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.5
    • /
    • pp.97-103
    • /
    • 2002
  • The assessment of the condition of a transformer winding which is suspected of having suffered short circuit damage can be difficult. Conventional test such as winding resistance, magnetic current or insulation resistance will only detect damage if a permanent electrical fault exists. Visual inspection of windings necessitates the removal of oil and in many cases only a very small proportion of the winding can be seen. We describe the characteristic of LVI test system and methods to detect the deformation of windings in the power transformers. As the front rise time of recurrent-surge generator pulse less than 1000 ㎱ and the peak value of pulse is about 500 V, we have the good results of detecting winding deformation in the LVI test of transformers.

Feature Extraction of Partial Discharge for Stator Winding of High Voltage Motor (고압전동기 고정자권선의 부분방전 특징추출)

  • Park, Jae-Jun
    • The Journal of Information Technology
    • /
    • v.7 no.4
    • /
    • pp.61-69
    • /
    • 2004
  • On-line monitoring of fault discharge is an important approach for indicating the condition of electrical insulation of stator winding in high voltage motor. In this paper, several key aspects of on-line monitoring system are discussed, involving the characteristics of fault discharge of stator winding in high voltage motor, spectrum analysis of four simulation fault signals, feature extraction of internal fault discharge from apply voltage to breakdown. The study of the partial discharge activities allows to highlight the ageing stage in the winding fault under test. During the life of the winding insulation fault, the shape of PD signal change relating to the ageing stage. The ageing of stator winding insulation fault of high voltage motor is investigated based on the characteristics of partial discharge pulse distribution and statistical parameters, such as maximum, skewness and kurtosis using discrete wavelet trnasform coefficients.

  • PDF

Analysis of Transient Characteristics of a SFCL Applied Into Third-winding Transformer in a Single Line-to-ground Fault (1선 지락 사고 시 3 권선 변압기에 적용된 초전도 한류기의 동작 특성 분석)

  • Choi, Hye-Won;Choi, Hyo-Sang;Jung, Byung-Ik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.7
    • /
    • pp.1033-1037
    • /
    • 2013
  • Coercion transformer is commonly used in the electrical grid which in three phase of distribution system. The accident of the electrical grid is divided into a single, a double, a third line-to-ground faults and a double, a third line-to-line faults. A single line-to-ground fault accounts for nearly 75[%] among them. In this research, when a Superconducting Fault Current Limiters (SFCL) was applied to the three phase power system, operation in a single line-to-ground fault and limiting characteristics of fault current according to turns ratio of third winding were analyzed. When a single line-to-ground fault happened, secondary winding's circuit was open. Then third winding's circuit with a SFCL was closed. So fault current was limited by diverted circuit. At this time, we could find out that size of the limited fault current could be changed according to third winding rate. We confirmed that limiting operation of the fault current was carried out within one-period. These results will be utilized in adjusting the size of the SFCL.