• 제목/요약/키워드: wind speed estimation

검색결과 259건 처리시간 0.036초

A Model To Enhance Site-Specific Estimation Of Wetness Duration Using A Wind Speed Correction

  • Kim, Kwang-Soo;S.Elwynn Taylor;Mark L.Gleason;Kenneth J.Koehler
    • 한국농림기상학회:학술대회논문집
    • /
    • 한국농림기상학회 2001년도 춘계 학술발표논문집
    • /
    • pp.163-166
    • /
    • 2001
  • One of the most important factors influencing the outbreak and severity of foliar diseases is the duration of wetness from dew deposition, rainfall, or irrigation. Models may provide good alternatives for assessing leaf wetness duration (LWD) without the labor, cost, and inconvenience of making measurements with sensors.(omitted)

  • PDF

풍력자원 조사를 위한 제주 북동부 연안역의 멱지수 분석 (Power Law Exponent in Coastal Area of Northeastern Jeju Island for the Investigation of Wind Resource)

  • 문서정;고정우;이병걸
    • 대한공간정보학회지
    • /
    • 제21권4호
    • /
    • pp.65-71
    • /
    • 2013
  • 고도에 따른 풍속변화를 의미하는 Wind shear는 풍력발전기의 에너지 생산량에 직접적으로 영향을 미치는 중요한 요소이다. 풍속을 보정하는 방법으로는 멱법칙(Power Law)이 사용되는데, 일반적으로 쓰이는 0.143(1/7)의 멱지수(Power Law exponent) 값을 이용한 보정식을 1/7th 멱법칙이라 한다. 하지만 멱지수는 해당 지역의 대기 안정도, 지표면의 상태 등에 의해 많은 영향을 받으므로, 실제 정확한 풍력에너지 예측을 위해서는 관심지역의 멱지수의 정확한 계산이 필요하다. 본 연구에서는 제주도 북동부 연안지역 3곳에 Met-mast를 설치하여 풍력자원을 측정하였고, 이를 바탕으로 제주도 북동부 지역에 적합한 멱지수를 계산하여 제안하였다. 제주도 북동부 연안지역의 멱지수를 계산한 결과, 한동 0.141, 평대 0.138, 우도 0.1254의 값을 얻었다. 0.143(1/7)의 멱지수 값, 제안한 멱지수 값을 적용하여 계산한 연간에너지생산량과 실제 측정된 풍황자료를 이용하여 계산한 연간에너지생산량을 비교한 결과, 세 지역 모두 제안한 멱지수 값을 적용하여 계산한 연간에너지생산량이 실제 측정된 풍황자료를 이용하여 계산한 연간에너지생산량과 유사한 결과를 보였고, 따라서 제안한 멱지수 값의 적용이 가능하다고 판단된다.

기후변화 취약성 지수 산출을 위한 한반도 관측 기후 특성 분석 (Analysis of Climate Characteristics Observed over the Korean Peninsula for the Estimation of Climate Change Vulnerability Index)

  • 남기표;강정언;김철희
    • 환경영향평가
    • /
    • 제20권6호
    • /
    • pp.891-905
    • /
    • 2011
  • Climate vulnerability index is usually defined as a function of the climate exposure, sensitivity, and adaptive capacity, which requires adequate selection of proxy variables of each variable. We selected and used 9 proxy variables related to climate exposure in the literature, and diagnosed the adequacy of them for application in Korean peninsula. The selected proxy variables are: four variables from temperature, three from precipitation, one from wind speed, and one from relative humidity. We collected climate data over both previous year (1981~2010) and future climate scenario (A1B scenario of IPCC SERES) for 2020, 2050, and 2100. We introduced the spatial and temporal diagnostic statistical parameters, and evaluated both spatial and time variabilities in the relative scale. Of 9 proxy variables, effective humidity indicated the most sensitive to climate change temporally with the biggest spatial variability, implying a good proxy variable in diagnostics of climate change vulnerability in Korea. The second most sensitive variable is the frequency of strong wind speed with a decreasing trend, suggesting that it should be used carefully or may not be of broad utility as a proxy variable in Korea. The A1B scenario of future climate in 2020, 2050 and 2100 matches well with the extension of linear trend of observed variables during 1981~2010, indicating that, except for strong wind speed, the selected proxy variables can be effectively used in calculating the vulnerability index for both past and future climate over Korea. Other local variabilities for the past and future climate in association with climate exposure variables are also discussed here.

신항만 해사 매립 공사시 비산먼지 발생량 산정 및 주변영향평가 (Estimation of Fugitive Dust Emission and Impact Assessment in Constructing the New Port by Reclamation of Sea Sand)

  • 최원준;조기철;이은용;나하영;이순규;오광중
    • 환경영향평가
    • /
    • 제15권4호
    • /
    • pp.237-247
    • /
    • 2006
  • In case of studied area located around the sea, the data measured from the regional meteorological office is highly different from the local weather data because the diffusivity of fugitive dust varies considerably with meteorological conditions. Especially, it is very difficult to predict the amount of fugitive dust accurately as wind speed remains high frequently. In this study, the fluxes of suspended particulates as a function of the friction velocity were applied to consider the effect of wind speed on the amount of fugitive dust generated from the reclamation site. The amount of fugitive dust estimated as mentioned above was simulated by using ISCST3 model. As a result, in case of using only the Fugitive Dust Formula which is usually used in Environment Impact Assessment, the predicted $PM_{10}$ concentrations with points were $43.4{\sim}67.8{\mu}g/m^3$. However, in case of applying to the flux of suspended particulates, the predicted values of $PM_{10}$ with points were $43.3{\sim}69.1{\mu}g/m^3$, $49.5{\sim}90.4{\mu}g/m^3$ and $76.0{\sim}182.6{\mu}g/m^3$ with the wind speeds of 4.4, 5.8 and 7.7m/s, respectively. It could be possible to predict the amount of fugitive dust accurately because these predicted values were similar to the measured values. Consequently, we can establish alternatives for reduction of fugitive dust in this area damaged by fugitive dust which is caused by wind.

Virtual Inertia Control of D-PMSG Based on the Principle of Active Disturbance Rejection Control

  • Shi, Qiaoming;Wang, Gang;Fu, Lijun;Liu, Yang;Wu, You;Xu, Li
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권5호
    • /
    • pp.1969-1982
    • /
    • 2015
  • The virtual inertia control (VIC) of wind turbine with directly-driven permanent-magnet synchronous generator (D-PMSG) can act similarly to the conventional synchronous generator in inertia response and frequency control, thereby supporting the system frequency stability. However, because the wind speed is inconstant and changeable to a certain extent and the D-PMSG is a complex nonlinear system, there are great difficulties in the virtual inertia optimal control of the D-PMSG. Based on the design principle of the active disturbance rejection control (ADRC), this paper presents a new VIC strategy for the D-PMSG from the perspective of power disturbance suppression in the system. The strategy helps fulfill the power grid disturbance estimation and compensation by means of the extended state observer (ESO) so as to improve the disturbance-resisting performance of the system. Compared with conventional proportional-derivative virtual inertia control (PDVIC), this method, which is of better adaptability and robustness, can not only improve the property of the D-PMSG responding to the system frequency but also reduce the influence of wind speed disturbance. The simulation and experiment results have verified the effectiveness and feasibility of the VIC based on the ADRC.

도플러 라이다를 이용한 ICE-POP 2018 기간 수평바람 연직 프로파일 산출 및 정확도 평가 (Retrieval and Accuracy Evaluation of Horizontal Winds from Doppler Lidars During ICE-POP 2018)

  • 김권일;류근수;백승우;신규희;이규원
    • 대기
    • /
    • 제32권2호
    • /
    • pp.163-178
    • /
    • 2022
  • This study aims to evaluate the accuracy of retrieved horizontal winds with different quality control methods from three Doppler lidars deployed over the complex terrain during the PyeongChang 2018 Olympic and Paralympic games. To retrieve the accurate wind profile, this study also proposes two quality control methods to distinguish between meteorological signals and noises in the Doppler velocity field, which can be broadly applied to different Doppler lidars. We evaluated the accuracy of retrieved winds with the wind measurements from the nearby or collocated rawinsondes. The retrieved wind speed and direction show a good agreement with rawinsonde with a correlation coefficient larger than 0.9. This study minimized the sampling error in the wind evaluation and estimation, and found that the accuracy of retrieved winds can reach ~0.6 m s-1 and 3° in the quasi-homogeneous wind condition. We expect that the retrieved horizontal winds can be used in the high-resolution analysis of the horizontal winds and provide an accurate wind profile for model evaluation or data assimilation purposes.

기상청 동네예보의 영농활용도 증진을 위한 방안: 복잡지형의 낮 기온 상세화 기법 (Improving Usage of the Korea Meteorological Administration's Digital Forecasts in Agriculture: Correction Method for Daytime Hourly Air Temperature over Complex Terrain)

  • 윤은정;김수옥
    • 한국농림기상학회지
    • /
    • 제21권4호
    • /
    • pp.221-228
    • /
    • 2019
  • 일출 이후부터 일몰 전까지 매시 간격으로 태양 일사로 인한 지표부근 기온상승 효과와 풍속이 미치는 영향을 추정하고자, 동향사면과 서향사면 간 대표 기상관측지점에 대하여 매시 일사량 편차에 따른 관측기온의 편차(기온변화량)을 풍속별로 구분하여 도출하였다. 일사편차 1 MJ/㎡ 당 기온변화량으로 일사효과를 표현하여 풍속과의 경험식을 구하고, 이것을 토대로 2018년 1월부터 2018년 12월까지 농산촌의 복잡지형에 위치한 기상관측지점 25곳에 대해 주간(06:00~19:00) 매시 기온을 추정한 후 검증하였다. 그 결과 추정값과 관측값의 평균 ME는 -0.98~0.67℃, 평균 RMSE는 0.95~2.04℃ 나타났다. 오후 3시 기준의 한낮기온은 선행연구에서 제시한 기존 모형과 추정신뢰도를 대조하였는데, 기존 모형의 추정오차(ME -0.91℃, RMSE 1.47℃)를 ME -0.45℃, RMSE 1.22℃까지 개선시킬 수 있었다.

논문 - GIS/RS를 이용한 비닐하우스 폭설 피해지역 추출 기법 연구 (Estimation of Greenhouse Damaged Area by Heavy Snowfall using GIS and Remote Sensing Technique)

  • 김샛별;신형진;윤동균;홍성욱;김성준
    • 한국관개배수논문집
    • /
    • 제18권2호
    • /
    • pp.111-121
    • /
    • 2011
  • This study is to estimate the possible damage area of greenhouse by heavy snowfall event using terra MODIS snow cover area (SCA) and the ground measured snowfall data (GMSD). For the 4 heavy snowfall events of January 2001, March 2004, December 2005 and January 2010, the areas exceeding the design criteria of snowfall depth for greenhouse breaking were extracted by coupling the MODIS SCA and GMSD. The main damaged regions were estimated as Gangwon province in 2001, Chungbuk and part of Gyeongbuk province in 2004, Jeonbuk and Jeonnam province in 2005, and Gangwon and part of Gyeonggi province in 2010 respectively. Comparing with the investigated number of greenhouse damaged data, the estimated areas reflected the statistical data except 2001. The 2001 greenhouse damages were caused by the high wind speed (35.7m/sec) together with snowfall. The results of this study can be improved if the design criteria of wind speed is added.

  • PDF

CFD를 이용하여 건물 외피의 바람에너지에 관한 적용연구 (A Basic Study for Wind Energy of Building Cladding using Computational Fluid Dynamics)

  • 정영배
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.39.2-39.2
    • /
    • 2011
  • The new and renewable energy today has a great interest in all countries around the world. In special it has need more limit of the fossil fuel that needs of low carbon emission among the social necessary conditions. Recently, the high-rise building demand the structural safety, the economic feasibility and the functional design. The high-rise building spends enormous energy and it satisfied the design in solving energy requirements. The requirements of energy for the building depends on the partly form wind energy due to the cladding of the building that came from the surroundings of the high-rise building. In this study of the wind energy, the cladding of the building was assessed a tentative study. The wind energy obtains from several small wind powers that came from the building or the surrounding of the building. In making a cladding the wind energy forms with wind pressure by means of energy transformation methods. The assessment for the building cladding was surrounded of wind speed and wind pressure that was carried out as a result of numerical simulation of wind environment and wind pressure which is coefficient around the high-rise building with the computational fluid dynamics. In case of the obtained wind energy from the pressure of the building cladding was estimated by the simulation of CFD of the building. The wind energy at this case was calculated by energy transform methods: the wind pressure coefficients were obtained from the simulated model for wind environment using CFD as follow. The concept for the factor of $E_f$ was suggested in this study. $$C_p=\frac{P_{surface}}{0.5{\rho}V^{2ref}}$$ $$E_c=C_p{\cdot}E_f$$ Where $C_p$ is wind pressure coefficient from CFD, $E_f$ means energy transformation parameter from the principle of the conservation of energy and $E_c$ means energy from the building cladding. The other wind energy that is $E_p$ was assessed by wind power on the building or building surroundings. In this case the small wind power system was carried out for wind energy on the place with the building and it was simulated by computational fluid dynamics. Therefore the total wind energy in the building was calculated as the follows. $$E=E_c+E_p$$ The energy transformation, which is $E_f$ will need more research and estimation for various wind situation of the building. It is necessary for the assessment to make a comparative study about the wind tunnel test or full scale test.

  • PDF

다변량 선형회귀분석을 이용한 증발접시계수 산정방법 적용성 검토 (Evaluation of applicability of pan coefficient estimation method by multiple linear regression analysis)

  • 임창수
    • 한국수자원학회논문집
    • /
    • 제55권3호
    • /
    • pp.229-243
    • /
    • 2022
  • 우리나라 11개 기상관측지역의 월별 기상자료가 증발접시계수에 미치는 영향을 분석하고, 증발접시계수 산정을 위한 4가지 형태의 다변량 선형회귀모형의 적용성을 검토하였다. 개발된 증발접시계수 산정모형의 적용성을 평가하기 위해서 기존에 다른 연구자들에 의해서 제안된 6가지의 모형과 비교 평가하였다. 우리나라 11개 기상관측지역에서 증발접시계수는 1, 2, 3, 7, 11, 12월은 기온에 가장 큰 영향을 받고, 다른 월들은 일사량에 가장 큰 영향을 받는 것으로 나타났다. 전반적으로 모든 월에서 풍속과 상대습도는 기온이나 일사량과 비교해서 증발접시계수에 큰 영향을 미치지 않는 것으로 나타났다. 모든 지역과 월에서 각 지역별로 5개의 독립변수(풍속, 상대습도, 기온, 일조시간과 가조시간의 비, 일사량)를 적용하여 유도된 모형이 가장 양호한 증발량 산정 결과를 보였다. 모형 검증결과에 의하면 다변량 선형회귀분석을 적용하여 증발접시계수를 산정하는 경우 일부 지역과 월에서 제한적으로 적용할 수 있을 것으로 판단된다.