

Evaluation of applicability of pan coefficient estimation method by multiple linear regression analysis

Rim, Chang-Soo^{a*}

^aProfessor, Department of Civil Engineering, Kyonggi University, Suwon, Korea

Paper number: 22-004 Received: 17 January 2022; Revised: 2 March 2022; Accepted: 3 March 2022

Abstract

The effects of monthly meteorological data measured at 11 stations in South Korea on pan coefficient were analyzed to develop the four types of multiple linear regression models for estimating pan coefficients. To evaluate the applicability of developed models, the models were compared with six previous models. Pan coefficients were most affected by air temperature for January, February, March, July, November and December, and by solar radiation for other months. On the whole, for 12 months of the year, the effects of wind speed and relative humidity on pan coefficient were less significant, compared with those of air temperature and solar radiation. For all meteorological stations and months, the model developed by applying 5 independent variables (wind speed, relative humidity, air temperature, ratio of sunshine duration and daylight duration, and solar radiation) for each station was the most effective for evaporation estimation. The model validation results indicate that the multiple linear regression models can be applied to some particular stations and months.

Keywords: Evaporation, Pan coefficient, Meteorological data, Multiple linear regression model

다변량 선형회귀분석을 이용한 증발접시계수 산정방법 적용성 검토

임창수**

*경기대학교 건설시스템공학 전공 교수

요 지

우리나라 11개 기상관측지역의 월별 기상자료가 증발접시계수에 미치는 영향을 분석하고, 증발접시계수 산정을 위한 4가지 형태의 다변량 선형 회귀모형의 적용성을 검토하였다. 개발된 증발접시계수 산정모형의 적용성을 평가하기 위해서 기존에 다른 연구자들에 의해서 제안된 6가지의 모 형과 비교 평가하였다. 우리나라 11개 기상관측지역에서 증발접시계수는 1, 2, 3, 7, 11, 12월은 기온에 가장 큰 영향을 받고, 다른 월들은 일사량 에 가장 큰 영향을 받는 것으로 나타났다. 전반적으로 모든 월에서 풍속과 상대습도는 기온이나 일사량과 비교해서 증발접시계수에 큰 영향을 미치 지 않는 것으로 나타났다. 모든 지역과 월에서 각 지역별로 5개의 독립변수(풍속, 상대습도, 기온, 일조시간과 가조시간의 비, 일사량)를 적용하여 유도된 모형이 가장 양호한 증발량 산정 결과를 보였다. 모형 검증결과에 의하면 다변량 선형회귀분석을 적용하여 증발접시계수를 산정하는 경우 일부 지역과 월에서 제한적으로 적용할 수 있을 것으로 판단된다.

핵심용어: 증발량, 증발접시계수, 기상자료, 다변량 선형회귀모형

*Corresponding Author. Tel: +82-31-249-9740 E-mail: csrim@kgu.ac.kr (C.-S. Rim)

© 2022 Korea Water Resources Association. All rights reserved.

1. 서 론

최근 기후변화에 따른 증발량(증발산량) 증가는 지역적 가 뭄을 초래하고 있다. 따라서 지역적으로 증발량(증발산량)을 더욱 정확하게 파악하고 산정하는 것은 수문순환과정을 이해 하고, 또한 효율적으로 수자원을 관리하기 위해 매우 중요하 다. 증발현상은 여러 기상요소와 밀접한 상관이 있으며 주로 기온, 풍속, 상대습도, 일사량 등에 영향을 받는다. 따라서 과 거 많은 연구자들은 이들 기상 요소를 이용해서 증발량(증발 산량)을 산정하는 방법을 제안한 바 있다. 과거 제안된 증발량 (증발산량) 산정식들은 기상요소가 수표면에서 증발에 영향 을 미치는 물리적인 요인을 파악하고 분석한 결과를 이용해서 유도되었다. 과거 기상자료를 이용하여 증발량(증발산량)을 산정하는 대표적인 방법은 크게 공기동력학적 이론에 기초한 방법, 기온자료를 이용한 방법, 태양복사 에너지를 이용한 방 법 그리고 에너지수지와 공기동력학적 이론을 조합한 방법으 로 구분된다(Meyer, 1915; Rohwer, 1931; Harbeck, 1958; Penman, 1948; Monteith, 1965; Makkink, 1957; Priestley and Taylor, 1972; Hargreaves and Samani, 1985; Allen et al., 1998).

한편 기상자료가 없는 지역에서 증발접시 증발량 자료를 이 용하여 기준증발산량을 산정하고자 하는 연구가 과거 많은 연 구자들에 의해서 수행된 바 있다. 증발접시계수는 기준 증발 량과 증발접시 증발량과의 상대적인 비로 표현되며, 증발접 시계수를 이용하여 기준증발산량을 아는 경우 수표면으로부 터의 증발량을 산정하거나 혹은 수표면으로부터의 증발량을 이용해서 기준증발산량을 산정할 수 있다(Irmak et al., 2002; Fu et al., 2004; Alvarez et al., 2007). Doorenbos and Pruitt (1977)는 잔디가 심어져 있는 lysimeter 로부터의 증발산량을 기준증발산량으로 정의한 바 있으며, 이를 증발접시 증발량과 비교한 결과 둘 사이에는 매우 높은 상관이 있음을 입증한 바 있다. 이러한 연구결과를 바탕으로 풍역대 거리(fetch distance), 풍속, 상대습도 자료를 이용하여 증발접시계수를 산정하는 식인 24PAN (FAO 24 pan evaporation)을 제안하였다. 하지 만 Doorenbos and Pruitt (1977)가 제시한 방법은 증발접시계 수 산정을 위해서는 도표를 적용하는 불편함이 있다. 따라서 이후 다른 연구자들은 이러한 도표를 사용하는 불편함을 개선 하기 위해서 종속변수를 증발접시계수로 하고, 독립변수로 서 풍역대 거리, 풍속 그리고 상대습도를 적용하는 식을 유도 하였다(Cuenca, 1989; Snyder, 1992; Pereira et al., 1995; Allen et al., 1998; Orang, 1998; Raghuwanshi and Wallender, 1998). 국내에서는 증발접시 증발량 자료를 이용하여 증발량 산정 식을 유도하고자 하는 연구가 수행된 바 있다(Cho, 1973; Kim, 2010; Seo and Kim, 2018). 하지만 증발접시계수와 기상요소 와의 상관성을 이용하여 증발량(증발산량)을 산정하고자 하 는 모형개발은 활발하게 이루어지지 않았다. 또한 기상청에서 는 2016년 7월 이후로 우리나라 전국 기상관측소에서 증발접 시증발량 산정을 중단하였고, Allen et al. (1998)에 의해서 제 안된 증발접시계수 산정모형을 적용하여 증발접시증발량을 산정하고 있는 실정이다. 따라서 이에 대한 검증과 검증결과 에 따라서 개선된 증발접시계수 산정모형이 필요하다. Rim (2020)은 Doorenbos and Pruitt (1977)에 의해서 제안된 증발 접시계수 산정 방법에 기초하여 제안된 연구자들(Cuenca, 1989; Snyder, 1992; Pereira et al., 1995; Allen et al., 1998; Orang, 1998; Raghuwanshi and Wallender, 1998)의 증발접시 계수 산정식을 우리나라 서울 기상관측지점에 적용하여 비교 검토한 바 있다. 분석결과에 의하면 Snyder (1992)에 의해서 제안된 모형이 기존에 제시된 증발접시계수 산정모형 중에서 가장 관측값과 유사한 증발접시계수를 모의한다고 발표하였 으며, 서울 기상관측지점에 대해서 Snyder (1992) 모형의 매개 변수 보정을 통해서 개선된 증발접시계수 산정모형을 제시하 였다. 하지만 Rim (2020)에 의해서 제시된 모형은 서울지역에 한정하여 유도되었고, 또한, Snyder (1992) 모형을 포함하여 기존에 연구자들에 의해서 제시된 Doorenbos and Pruitt (1977)의 모형에 기초한 모형들은 정량화하기 어려운 풍역대 거리(fetch distance)가 입력자료로 요구된다. 따라서 우리나 라 전역에 대해서 일반화하여 적용하기에는 한계가 있다.

본 연구에서는 Rim (2020)에 의해서 제안된 증발접시계수 산정 방법의 지역 한계성을 극복하기 위해서 우리나라 전국에 서 장기적인 일사량 자료를 보유한 기상관측지점을 연구 대상 지역으로 선정하였다. 또한 입력값을 추정하는 데 어려움이 있는 풍역대 거리 대신에 기상관측지점에서 일반적으로 관측 되고 있는 기상요소 자료만을 입력자료(독립변수)로 하는 다 변량 선형회귀모형에 근거하여 증발접시계수(종속변수)를 산정하는 방법을 검토하였다. 모형개발을 위해서 적용된 증 발접시계수는 소형증발접시 증발량 자료와 FAO Penman-Monteith (FAO P-M) 기준증발산식(Allen et al., 1998) 증발 산량을 이용하여 산정하였다. 기준증발산량을 산정하는 FAO P-M식은 국제식량농업기구(Food and Agriculture Organization of the United States, FAO)에서 기준증발산량 산정을 위한 표준방법으로 제안된 바 있으며 많은 연구자들에 의해서 기준증발산량 산정을 위해서 적용된 바 있다(Droogers and Allen, 2002; Fontenot, 2004; Trajkovic, 2005). 개발된 다변 량 선형회귀 모형의 적용성을 검토하기 위해 개발된 증발접시 계수를 이용해서 증발량을 산정하고 산정된 증발량을 관측된

증발량과 비교하였다. 또한 Doorenbos and Pruitt (1977)의 모형에 기초하여 개발된 다른 연구자들의 증발접시계수 산정 모형들과 비교하였다.

2. 연구 방법

증발접시계수 산정모형을 개발하기 위해서 다변량 선형회 귀분석을 실시하였고 월평균 일 기상자료를 입력자료(독립 변수)로 적용하였다. 여기서 증발량자료는 소형증발접시를 이용해서 관측된 자료를 이용하였고, 기준증발산량은 FAO Penman-Monteith (FAOP-M) 기준증발산식(Allen *et al.*, 1998) 을 적용하여 산정하였다. 또한 개발된 모형의 적합성을 검증 하기 위해 다른 연구자들의 증발접시계수 산정모형들과 비교 하였다.

본 연구에서는 분석을 위해서 장기적으로 기상자료 관측 이 수행되고 있는 우리나라 11개 기상관측소(서울, 인천, 수 원, 서산, 청주, 대전, 포항, 전주, 부산, 목포, 제주)의 월평균 기상자료(소형증발접시 증발량, 풍속, 상대습도, 기온, 일조 시간, 일사량)를 이용하였다(Fig. 1). 소형증발접시 증발량 자 료의 경우 2016년 7월 1일 이후로는 관측이 중단되었다. 따라 서 소형증발접시 증발량 자료의 경우 2016년 6월까지의 자료 를 사용하였으며, 증발량 관측이 수행되지 않은 기간은 분석 에서 제외하였다. 각 기상관측소의 자료 적용기간(년)은 서울 (1974~2016), 인천(1974~2016), 다천(1984~2016), 서산 (1981~2016), 천주(1974~2016), 대전(1984~2016), 포항 (1981~2016), 전주(1982~2016), 부산(1981~2016), 목포 (1973~2016), 제주(1982~2016)이다.

Fig. 1. The location map of 11 study stations

2.1 증발접시계수

증발량과 기준증발산량과의 비인 증발접시계수는 Eq. (1) 과 같이 표현된다. 여기서 증발량자료는 소형증발접시 증발 량자료를 적용하고, 기준증발산량은 FAO Penman-Monteith (FAO P-M) 기준증발산식(Allen *et al.*, 1998)을 적용하였다. 과거 연구자들은 증발접시계수 산정을 위해, 입력자료로서 풍역대 거리, 풍속 그리고 상대습도를 적용하는 모형들을 유 도한바 있고(Cuenca, 1989; Snyder, 1992; Pereira *et al.*, 1995; Allen *et al.*, 1998; Orang, 1998; Raghuwanshi and Wallender, 1998), 따라서 증발접시계수는 Eq. (1)과 같이 풍역대 거리, 풍속 그리고 상대습도의 함수로서 나타낼 수 있다.

본 연구에서는 기존의 연구자들에 의해서 제안된 모형들 을 본 연구에서 다변량 선형회귀분석을 이용해서 유도된 증발 접시계수 산정모형들과 비교 검토하였다. 따라서, Eq. (1)의 관계로부터 증발접시계수 값과 기준증발산량을 아는 경우수 표면으로부터의 증발량을 산정하거나 혹은 증발접시계수 값 과 수표면으로부터의 증발량을 아는 경우 기준증발산량을 산 정할 수 있다(Irmak *et al.*, 2002; Fu *et al.*, 2004; Alvarez *et al.*, 2007).

$$Cp = \frac{ET_o}{E}$$

$$= f(FET, u_2, RH)$$
(1)

여기서, C_P =소형증발접시계수, E=소형증발접시증발량(mm/ day), ET_o =기준증발산량(mm/day), FET=풍역대 거리(m), u_2 =높이 2 m 풍속(km/day 혹은 m/s), 그리고 RH=상대습도 (%)이다. Eq. (1)에서 기준증발산량(ET_o)은 FAO Penman-Monteith(FAO P-M) 기준증발산식(Eq. (2))를 적용하였으 며, FAO P-M식은 여러 연구자들(Allen *et al.*, 1994; Droogers and Allen, 2002)에 의해서 증발산계(lysimeter)를 이용하여 검증된 바 있다. 또한 국제식량농업기구(Food and Agriculture Organization of the United States, FAO)에서 기준증발산량 산정을 위한 표준방법으로 제안된 바 있다.

$$ET_{o} = \frac{0.408 \Delta Q_{n} + \gamma \frac{900}{T_{a} + 273} u_{2}(e_{s} - e_{a})}{\Delta + \gamma(1 + 0.34u_{2})}$$
(2)

$$Q_{n} = Q_{ns} - Q_{nl}$$

$$Q_{ns} = (1 - \alpha) R_{S}$$

$$Q_{nl} = \sigma \left[\frac{T_{\max,K}^{4} + T_{\min,K}^{4}}{2} \right] \left[0.34 - 0.14 \sqrt{e_{a}} \right]$$

$$\times \left[1.35 \frac{R_{S}}{R_{SO}} - 0.35 \right]$$

여기서, ET_o =기준증발산량(mm/day), Q_n =순복사(MJ/m²/day), Q_{ns} =단파복사량(MJ/m²/day), Q_{ns} =단파복사량(MJ/m²/day), Q_{nl} =장파복사량(MJ/m²/day), R_{SO} =지구상에 도달하는 태양복사량(MJ/m²/day), α =잔디피복의 경우 albedo (=0.23), T_a =지상 2 m 높이에서의 대기온도(°C), σ =Stefan-Boltzmann 상수(=4.903×10⁻⁹ MJ/m²/day), T_{max} =최고기온(K), T_{min} =최 저기온(K), u_2 =지상 2 m 높이에서의 풍속(m/s), e_s =포화증기 압(kPa), e_a =실제증기압(kPa), $(e_s - e_a)$ =포화미흡량 (kPa), Δ =대기온도에서의 포화증기압 접선경사(kPa/°C), γ =습도 계계수(kPa/°C)이다.

2.2 다변량 선형회귀분석을 이용한 증발접시계수 산정 모형

본 연구에서는 기상관측지점에서 일반적으로 관측되고 있는 기상자료(기온, 풍속, 상대습도, 일조시간/가조시간 비, 일

사량)를 독립변수로 하고, 증발접시계수를 종속변수로 하는 다변량 선형회귀모형에 근거한 증발접시계수를 산정하는 방 법을 검토하고자 다변량 선형회귀분석을 실시하였다. 다변 량 선형회귀모형은 Eq. (3)과 같이 나타낼 수 있다. 본 연구에 서 종속변수 Y는 증발접시계수를 나타내고, 독립변수 X는 기 상요소(풍속, 상대습도, 기온, 일조시간/가조시간 비, 일사량) 을 나타낸다. 다변량 선형회귀모형의 독립변수들간의 상관 성은 낮은 것으로 나타나서 다변량 선형회귀분석에 문제가 없는 것으로 나타났다.

$$Y = \alpha + \beta X_1 + \gamma X_2 + \dots + \epsilon X_k \tag{3}$$

여기서 계수 α, β, γ,, ϵ는 매개변수를 나타내고, β는 모든 다른 독립변수를 일정하다고 간주하는 경우 독립변수 X₁과 종속변수 Y사이에 관계의 경사인 부분경사계수이다. β는 다

Table 1. Models	s for	estimating	pan	coefficients
-----------------	-------	------------	-----	--------------

	Models	Suggested by
A	$\begin{split} C\!p = & 0.475 - (0.245 \times 10^{-3} u_2) + (0.516 \times 10^{-2} R H) + (0.118 \times 10^{-2} F) - (0.16 \times 10^{-4} R H^2) \\ & - (0.101 \times 10^{-5} F^2) - (0.8 \times 10^{-8} R H^2 u_2) - (0.1 \times 10^{-7} R H^2 F) \end{split}$	Cuenca (1989)
В	$Cp = 0.482 + [0.24\ln{(F)}] - (3.76 \times 10^{-4}u_2) + (0.0045RH)$	Snyder (1992)
С	$Cp = 0.85 \times \frac{\Delta + \gamma}{\Delta + \gamma(1 + 0.33 wind_2)}$	Pereira et al. (1995)
D	$Cp = 0.108 - 0.0286 wind_2 + 0.0422 \ln{(F)} + 0.1434 \ln{(RH)} - 0.000631 [\ln{(F)}]^2 \ln{(RH)}$	Allen et al. (1998)
Е	$Cp = 0.51206 - (0.321 \times 10^{-3}u_2) + (0.2889 \times 10^{-2}RH) + 0.03188\ln(F) - [0.107 \times 10^{-3}RH\ln(F)]$	Orang (1998)
F	$ \begin{array}{c} Cp = 0.5944 + 0.024X_1 - 0.0583X_2 - 0.1333X_3 - 0.2083X_4 + 0.0812X_5 + 0.1344X_6 \\ \text{where,} \ X_1 = \ln{(F)} \\ X_2, X_3, X_4 = 0 & \text{if} u_2 < 175(km/day) \\ X_2 = 1 & \text{if} 175 \le u_2 < 425(km/day) \\ X_3 = 1 & \text{if} 425 \le u_2 \le 700(km/day) \\ X_4 = 1 & \text{if} u_2 > 700(km/day) \\ X_5, X_6 = 0 & \text{if} RH < 40(\%) \\ X_5 = 1 & \text{if} 40 \le RH < 70(\%) \\ X_6 = 1 & \text{if} RH \ge 70(\%) \\ \end{array} $	Raghuwanshi and Wallender (1998)
G	$Cp_m = a + b_1u_2 + b_2RH + b_3T + b_4Sol$ where, a =intercept term; b_1 b_2 b_3 b_4 =slope coefficient for each of the independent variables; m=month (the generalized model developed by applying the average values of 4 independent variables for 11 stations)	Present study
Н	$Cp_m = a + b_1u_2 + b_2RH + b_3T + b_4Sol$ where, a =intercept term; $b_1 \ b_2 \ b_3 \ b_4$ =slope coefficient for each of the independent variables; m=month (the model developed by applying 4 independent variables for each station)	Present study
I	$Cp_m = a + b_1u_2 + b_2RH + b_3T + b_4B + b_5Sol$ where, a =intercept term; b_1 b_2 b_3 b_4 b_5 =slope coefficient for each of the independent variables; m=month (the model developed by applying 5 independent variables for each station)	Present study
J	Cp_m =dependent variable (m=month); u_2 , RH, T, B, Sol=indenpndent variables (the model developed by applying stepwise regression method for each station)	Present study

Cp=pan coefficient; *F*=upwind buffer zone (fetch=10 m); *RH*=relative humidity (%); u_2 =wind speed at 2 m height (km/day); *wind*₂=wind speed at 2 m height (m/s); *T*=air temperature (°C); *B*=ratio of sunshine duration and daylight duration; *Sol*=solar radiation (*MJ*/*m*²/*day*)

변량 선형회귀모형의 다른 독립변수들이 일정한 경우 독립변 수 X₁이 한 단위 증가에 따른 Y의 변화를 나타낸다. α는 회귀 식의 절편으로서 독립변수가 0인 경우 Y의 값을 나타낸다.

본 연구에서는 다변량 선형회귀모형을 개발하기 위해서 4 가지 다른 독립변수 조건(Models G~J)을 적용하였다(Table 1). 첫 번째로 Model G에서는 11개 지역 전체의 기상자료(풍 속, 상대습도, 기온, 일사량)의 평균값을 입력자료(독립변수) 로 적용하였다. 두 번째로 Model H에서는 각 지역별로 풍속, 상대습도, 기온, 일사량을 입력자료(독립변수)로 적용하였다. 세 번째로 Model I에서는 각 지역별로 풍속, 상대습도, 기온, 일조시간과 가조시간의 비, 일사량을 입력자료(독립변수)로 적용하였다. 네 번째로 Model J에서는 각 지역별로 풍속, 상대 습도, 기온, 일조시간과 가조시간의 비, 일사량을 입력자료(독 립변수)로 다변량 선형회귀분석 방법 중에 하나인 단계입력 방식(stepwise regression method)를 적용하여 분석하였다. 단계입력방식에서는 다른 독립변수들이 회귀식에 존재할 때 종속변수에 영향력이 있는 독립변수들만을 회귀식에 포함시 키는 방식이다.

2.3 산정방법 비교 검증

다변량 선형회귀모형들의 적용성을 검토하기 위해 개발된 모형으로부터 산정된 증발량을 관측된 증발량과 비교하였 다. 또한 Doorenbos and Pruitt (1977)의 모형에 기초하여 과거 연구자들(Cuenca, 1989; Snyder, 1992; Pereira *et al.*, 1995; Allen *et al.*, 1998; Orang, 1998; Raghuwanshi and Wallender, 1998)에 의해서 풍역대 거리, 풍속, 그리고 상대습도를 이용 하여 증발접시계수를 산정하도록 개발된 증발접시계수 산정 모형과 비교 검토하였다(Table 1).

Table 1에 제시된 증발접시계수 산정식을 적용하여 증발 접시 계수를 산정하고, 산정된 증발접시계수를 이용하여 증 발량 산정하였다. 또한 산정된 증발량을 관측된 증발접시증 발량과 Nash-Sutcliffe Efficiency (NSE) 지수(Eq. (4))를 이 용하여 비교 평가하였다. Nash-Sutcliffe Efficiency (NSE) 지 수(Nash and Sutcliffe, 1970)는 -∞부터 1까지의 범위를 갖고, 지수 값 1은 관측 값과 산정 값이 완전하게 일치함을 의미한다.

$$NSE = 1 - \frac{\sum_{i=1}^{n} (H_{i,obs} - H_{i,est})^2}{\sum_{i=1}^{n} (H_{i,obs} - \overline{H_{i,obs}})^2}$$
(4)

여기서 $H_{i,obs}$ 는 관측된 *i* 번째 월의 증발량을 나타내며, $H_{i,obs}$ 는 산정된 *i* 번째 월의 증발량을 나타내고, $\overline{H_{i,obs}}$ 는 전 기간 동안

관측 자료의 평균 증발량이고, n은 자료의 총 수이다.

또한 평가분석을 위해 적용된 결정계수(Eq. (5))는 회귀모 형의 설명력을 표현하는 것으로 0에 가까울수록 설명력이 낮 고, 1에 가까울수록 높다고 해석할 수 있다. F 검정통계량은 회귀모형의 유의성에 대한 총체적 검증을 위해 적용된다.

$$R^{2} = \frac{\sum (\hat{y_{i}} - \bar{y})^{2}}{\sum (y_{i} - \bar{y})^{2}}$$
(5)

$$F = \frac{SSR/p}{SSE/(n-p-1)} \tag{6}$$

여기서, R^2 는 결정계수, y_i 는 월별 증발량 측정값, \overline{y} 는 전체 기간의 증발량 평균값, $\hat{y_i}$ 은 월별 증발량의 추정값, *SSR*은 회 귀식에 의한 변동량, *SSE*는 오차에 의한 변동량, *n*는 자료수, *p*는 독립변수 수이다.

3. 분석결과

3.1 증발접시계수에 미치는 기상요소 중요도

우리나라 11개 기상관측소의 월평균 기상자료(소형증발접 시 증발량, 기온, 상대습도, 풍속, 일사량)를 이용하여, 월별 기 상요소가 증발접시계수에 미치는 영향을 분석하였다(Table 2). 분석결과에 의하면 우리나라 11개 기상관측지역에서 증 발접시계수는 1, 2, 3, 7, 11, 12월은 기온에 가장 큰 영향을 받 으며, 4, 5, 6, 8, 9, 10월은 일사량에 가장 큰 영향을 받는 것으로 나타났다. 전반적으로 모든 월에서 기온과 일사량은 풍속과 상대습도에 비해서 증발접시계수에 큰 영향을 미치는 것으로 나타났다.

각각의 기상자료가 증발접시계수에 미치는 영향력을 분석 하기 위해서 표준화된 회귀계수(standardized beta coefficient) 를 적용하였다. 표준화된 회귀계수는 입력자료를 표준화시 켜(평균=0, 표준편차=1) 분석한 것이며, 표준화 계수의 절대 값이 클수록 종속변수에 대한 독립변수의 영향력이 크다고 판단할수 있다. 1월의 경우 기온은 표준화 계수 0.454, 유의확 률 0.000으로 증발접시계수 산정에 가장 큰 영향을 미치는 기 상요소인 것으로 나타났으며, 반면에 상대습도는 표준화 계 수 -0.062, 유의확률 0.180으로 가장 중요하지 않은 기상요소 로서 나타났다. 2월의 경우 기온은 표준화 계수 0.395, 유의확 률 0.000으로 가장 큰 영향을 미치는 기상요소인 것으로 나타 났으며, 반면에 일사량은 가장 중요하지 않은 기상요소로서 나타났다. 3월의 경우 기온은 표준화 계수 0.331, 유의확률

Month	R	F	u ₂	RH	Т	Sol
1	0.572	46.997 (0.000)	[0.136] (0.007)	[-0.062] (0.180)	[0.454] (0.000)	[-0.073] (0.112)
2	0.459	25.888 (0.000)	[0.117] (0.015)	[-0.083] (0.099)	[0.395] (0.000)	[0.005] (0.923)
3	0.512	34.301 (0.000)	[0.186] (0.000)	[-0.186] (0.000)	[0.331] (0.000)	[0.150] (0.002)
4	0.577	48.266 (0.000)	[0.213] (0.000)	[-0.112] (0.017)	[0.298] (0.000)	[0.380] (0.000)
5	0.518	35.539 (0.000)	[0.268] (0.000)	[-0.030] (0.572)	[0.132] (0.015)	[0.438] (0.000)
6	0.414	19.955 (0.000)	[0.293] (0.000)	[-0.030] (0.605)	[0.070] (0.239)	[0.323] (0.000)
7	0.389	16.717 (0.000)	[0.030] (0.571)	[-0.166] (0.003)	[-0.376] (0.000)	[0.367] (0.000)
8	0.457	24.842 (0.000)	[0.125] (0.009)	[-0.075] (0.136)	[-0.337] (0.000)	[0.476] (0.000)
9	0.452	24.165 (0.000)	[0.231] (0.000)	[0.059] (0.228)	[0.193] (0.000)	[0.271] (0.000)
10	0.564	43.795 (0.000)	[0.218] (0.000)	[-0.141] (0.002)	[0.168] (0.001)	[0.312] (0.000)
11	0.527	36.227 (0.000)	[0.160] (0.002)	[-0.187] (0.000)	[0.369] (0.000)	[-0.020] (0.689)
12	0.589	49.891 (0.000)	[0.215] (0.000)	[-0.159] (0.001)	[0.377] (0.000)	[-0.086] (0.071)

Table 2. Statistical significance of meteorological data on pan coefficient

R=coefficient of correlation; F=test statistic F value; []=standardized beta coefficient; ()=0.05 level of significance(two-tailed test); u2=wind speed at 2 m height (km/day); RH=relative humidity (%); T=air temperature (°C); Sol=solar radiation ($MJ/m^2/day$)

0.000으로 가장 큰 영향을 미치는 기상요소인 것으로 나타났 으며, 반면에 일사량은 가장 중요하지 않은 기상요소로서 나 타났다. 4월의 경우 일사량은 표준화 계수 0.380, 유의확률 0.000으로 가장 큰 영향을 미치는 기상요소인 것으로 나타났 으며, 반면에 상대습도는 가장 중요하지 않은 기상요소로서 나타났다. 5월의 경우 일사량은 표준화 계수 0.438, 유의확률 0.000으로 가장 큰 영향을 미치는 기상요소인 것으로 나타났 으며, 반면에 상대습도는 가장 중요하지 않은 기상요소로서 나타났다. 6월의 경우 일사량은 표준화 계수 0.323, 유의확률 0.000으로 가장 큰 영향을 미치는 기상요소인 것으로 나타났 으며, 반면에 상대습도는 가장 중요하지 않은 기상요소로서 나타났다. 7월의 경우 기온은 표준화 계수 -0.376, 유의확률 0.000으로 가장 큰 영향을 미치는 기상요소인 것으로 나타났 으며, 반면에 풍속은 가장 중요하지 않은 기상요소로서 나타났 다. 8월의 경우 일사량이 표준화 계수 0.476, 유의확률 0.000 으로 가장 중요한 기상요소인 것으로 나타났으며, 반면에 상 대습도는 가장 중요하지 않은 기상요소로서 나타났다. 9월의 경우 일사량이 표준화 계수 0.271, 유의확률 0.000으로 가장 중요한 기상요소인 것으로 나타났으며, 반면에 상대습도는 가 장중요하지 않은 기상요소로서 나타났다. 10월의 경우 일사 량이 표준화 계수 0.312, 유의확률 0.000으로 가장중요한 기 상요소인 것으로 나타났으며, 반면에 상대습도는 가장중요하 지 않은 기상요소로서 나타났다. 11월의 경우 기온이 표준화 계수 0.369, 유의확률 0.000으로 가장중요한 기상요소인 것으 로 나타났으며, 반면에 일사량은 가장중요하지 않은 기상요소 로서 나타났다. 12월의 경우 기온이 표준화 계수 0.377, 유의 확률 0.000으로 가장중요한 기상요소인 것으로 나타났으며, 반면에 일사량은 가장중요하지 않은 기상요소로서 나타났다.

풍속은 7월을 제외한 모든 월에서 유의수준 0.05에서 증발 접시계수와 유의적인 선형관계가 있는 것으로 나타났다. 상 대습도는 1월, 2월, 5월, 6월, 8월, 9월을 제외하고 나머지 월에 서 유의수준 0.05에서 증발접시계수와 유의적인 선형관계가 있는 것으로 나타났다. 기온은 6월을 제외하고 나머지 모든 월에서 유의수준 0.05에서 증발접시계수와 유의적인 선형관 계가 있는 것으로 나타났다. 일사량은 1월, 2월, 11월, 12월을 제외하고 나머지 월에서 유의수준 0.05에서 증발접시계수와 유의적인 선형관계가 있는 것으로 나타났다. 전반적으로 모 든 월에서 기온과 일사량이 풍속이나 상대습도에 비해서 증발 접시계수에 대하여 영향력이 큰 것으로 나타났다.

본 연구에서 증발접시계수는 Eq. (1)에서 표시된 바와 같이 FAO Penman-Monteith (FAO P-M) 기준증발산량과 증발접 시증발량과의 상대적인 비로서 정의되고, 기준증발산량과 증발접시증발량 모두 기상요소에 직접적인 영향을 받는다. 분석결과에 의하면 기온이 높은 계절에 일사량이 증발접시계 수에 상대적으로 큰 영향을 미치고, 기온이 낮은 계절에 기온 이 증발접시계수에 상대적으로 큰 영향을 미치고 있다. 또한 풍속과 상대습도는 계절에 상관없이 영향이 작은 것으로 나타 났다. 따라서 월별 기상요소가 증발접시계수에 미치는 민감 도가 계절별로 차이가 있는 것으로 판단된다.

3.2 다변량 선형회귀모형

다변량 선형회귀모형은 3가지 다른 독립변수 조건(Models G~J)이 적용되었다(Table 1). Model H에서는 각 지역별로 풍 속, 상대습도, 기온, 일사량을 입력자료(독립변수)로 적용하 였다. Model I에서는 각 지역별로 풍속, 상대습도, 기온, 일조 시간과 가조시간의 비, 일사량을 입력자료(독립변수)로 적용 하였다. Model J에서는 각 지역별로 풍속, 상대습도, 기온, 일 조시간과 가조시간의 비, 일사량을 입력자료(독립변수)로 다 변량 선형회귀분석 방법 중에 하나인 단계입력방식(stepwise regression method)를 적용하여 분석하였다. Model G는 11개 전체 기상관측지역의 자료를 적용하여 유도된 모형으 로서 11개 지역 전체의 기상자료(풍속, 상대습도, 기온, 일사 량)의 평균값을 입력자료(독립변수)로 적용하였다. Table 1 에서 보여주는 Model G의 매개변수를 포함한 월별 다변량 선 형회귀모형은 아래 Eqs. (6)~(17)과 같다. 다변량 선형회귀모 형에서 종속변수 Cp는 각 월별 증발접시계수를 나타내고, 독 립변수인 u2는 풍속(km/day), RH는 상대습도(%), T는 기온 (℃), Sol은 일사량(MJ/m²/day)를 나타낸다. 또한 기존에 다른 연구자들에 의해서 제안된 모형들과 적용성을 비교 검토하기 위해서 Table 1에서 보여주는 기존에 제안된 모형들(Models A~F)을 이용하여 증발접시계수를 산정하고 산정된 증발접 시계수와 기준증발산량을 이용하여 증발량을 산정하였다.

$$Cp_{1} = 0.827 + (31.94 \times 10^{-5}u_{2})$$

$$-(127.657 \times 10^{-5}RH) + (2590.961 \times 10^{-5}T)$$

$$-(25.806 \times 10^{-5}Sol)$$

$$(7)$$

$$Cp_{2} = 0.776 + (23.036 \times 10^{-5}u_{2})$$

$$- (143.655 \times 10^{-5}RH) + (2092.505 \times 10^{-5}T)$$

$$+ (1.27 \times 10^{-5}Sol)$$
(8)

$$Cp_3 = 0.8 + (49.507 \times 10^{-5}u_2) - (143.811 \times 10^{-5}RH) \quad (9) + (2658.491 \times 10^{-5}T) + (41.588 \times 10^{-5}Sol)$$

$$Cp_4 = 0.283 + (38.536 \times 10^{-5}u_2)$$
(10)
-(163.377 × 10⁻⁵RH) + (2081.33 × 10⁻⁵T)
+(53.792 × 10⁻⁵Sol)

$$Cp_{5} = 0.167 + (60.159 \times 10^{-5}u_{2})$$

$$- (50.918 \times 10^{-5}RH) + (1391.632 \times 10^{-5}T)$$

$$+ (57.056 \times 10^{-5}Sol)$$
(11)

$$Cp_{6} = 0.33 + (80.77 \times 10^{-5}u_{2}) - (56.545 \times 10^{-5}RH)$$
(12)
+ (819.4 × 10^{-5}T) + (46.368 × 10^{-5}Sol)

$$Cp_{7} = 1.918 + (7.274 \times 10^{-5}u_{2})$$

$$- (438.966 \times 10^{-5}RH) - (3877.004 \times 10^{-5}T)$$

$$+ (53.995 \times 10^{-5}Sol)$$
(13)

$$Cp_8 = 1.522 + (29.908 \times 10^{-5}u_2)$$
(14)
- (187.01 \times 10^{-5}RH) - (3486.899 \times 10^{-5}T)
+ (66.349 \times 10^{-5}Sol)

$$Cp_{9} = 0.037 + (51.358 \times 10^{-5}u_{2})$$

$$+ (128.4 \times 10^{-5}RH) + (1916.734 \times 10^{-5}T)$$

$$+ (48.093 \times 10^{-5}Sol)$$
(15)

$$Cp_{10} = 0.489 + (42.045 \times 10^{-5}u_2)$$
(16)
- (271.9 \times 10^{-5}RH) + (1053.793 \times 10^{-5}T)
+ (61.627 \times 10^{-5}Sol)

$$Cp_{11} = 0.773 + (33.465 \times 10^{-5} u_2)$$

$$- (345.28 \times 10^{-5} RH) + (2029.888 \times 10^{-5} T)$$

$$- (5.732 \times 10^{-5} Sol)$$

$$(17)$$

$$Cp_{12} = 0.86 + (47.542 \times 10^{-5} u_2)$$
(18)
- (293.688 \times 10^{-5} RH) + (2057.582 \times 10^{-5} T)
- (31.247 \times 10^{-5} Sol)

3.3 증발접시계수 산정모형 비교

다변량 선형회귀모형의 적용성을 검토하기 위해 개발된 모형으로부터 산정된 증발량을 관측된 증발량과 비교하였 다. 또한 과거 연구자들에 의해서 개발된 모형들과 비교 검토 하였다. Tables 3~13은 11개 기상관측지점에서 증발접시계 수 산정을 위해 유도된 4가지 다변량 선형회귀모형(Models G~J)과 기존에 다른 연구자들에 의해서 개발된 6가지 모형 (Models A~F)을 적용하여 산정된 증발량이 관측된 증발량을 어느 정도 모의하는지를 보여주는 NSE 계수와 증발량 산정 결과이다.

전반적으로 10개 모형 중에서 모든 기상관측지점에서 Model I가 가장 양호한 증발량 모의결과를 보였다. Model I는 본 연구에서 제시된 모형으로 독립변수로 각 기상관측소의 풍속, 상대습도, 기온, 일조시간과 가조시간의 비, 일사량을 입 력자료로 적용한다. 다음으로 연구지역과 월에 따라서 Model H가 Model J보다 양호한 증발량 모의결과를 보이거나 혹은 Model J가 Model H보다 양호한 모의결과를 보였다. Model H에서는 독립변수로 각기상관측소의 풍속, 상대습도, 기온, 일사량자료를 입력자료로 적용하고, Model J에서는 각지역 별로 풍속, 상대습도, 기온, 일조시간과 가조시간의 비, 일사량 을 입력자료(독립변수)로 적용하고, 중요도가 높은 변수만이 독립변수에 포함된다. 또한 본 연구에서 제시한 Model G 역시 기존에 다른 연구자들에 의해서 제시된 Model들(Models A~F)에 비해서 양호한 결과를 보였다. Model G에서는 다변 량 선형회귀모형을 일반화하기 위해서 11개 지역 전체의 기 상자료(풍속, 상대습도, 기온, 일사량)의 평균값을 독립변수 로 적용하여 유도된 일반화된 모형이다.

본 연구에서 제시된 모형들(Models G~J)의 모의결과를 비 교했을 때 각 기상관측소 자료를 이용해서 각 지점별로 유도 된 다변량 선형회귀모형(Model I)가 가장 양호한 모의결과를 보였다. Model I로부터 산정된 증발량은 관측된 증발량과 가 장 유사한 결과를 보였으며, NSE 지수 역시 가장 양호한 결과 를 보였다. Model G의 경우 다른 Model H, Model I, Model J에 비해서 덜 양호한 증발량 산정결과를 보이고 있다. 하지만 11개 기상관측지점 전체의 자료를 이용하여 유도된 다변량 선형회귀모형으로서 일반화된 모형이라는 점을 고려할 때 타 당한 결과라 할 수 있다.

본 연구에서 제시된 모형(Models G~J)을 지역별, 월별로 비교한 결과 서울지역의 경우 Model G, H, I는 6월(NSE= 0.587, 0.672, 0.676)에 가장 양호한 증발량 모의결과를 보였 고, Model J는 2월(NSE=0.634)에 가장 양호한 증발량 모의결 과를 보였다. 인천지역의 경우 Model G는 2월(NSE=0.171), Model H는 10월(NSE=0.555), Model I는 8월(NSE=0.733), Model J는 9월(NSE=0.702)에 가장 양호한 증발량 모의결 과를 보였다. 수원지역의 경우 Model G는 8월(NSE=0.150), Model H는 9월(NSE=0.457), Model I는 6월(NSE=0.801), Model J는 8월(NSE=0.790)에 가장 양호한 증발량 모의결과 를 보였다. 서산지역의 경우 Model G는 11월(NSE=0.511), Model H는 9월(NSE=0.647), Model I와 J는 6월(NSE=0.890, 0.873)에 가장 양호한 증발량 모의결과를 보였다. 청주지역 의 경우 Model G와 H는 10월(NSE=0.453, 0.626), Model I와 J는 8월(NSE=0.884, 0.884)에 가장 양호한 증발량 모의결과 를 보였다. 대전지역의 경우 Model G와 H는 7월(NSE=0.538, 0.683), Model I와 J는 6월(NSE=0.899, 0.895)에 가장 양호한 증발량 모의결과를 보였다. 포항지역의 경우 Model G는 7월 (NSE=0.611), Model H는 4월(NSE=0.738), Model I는 5월 (NSE=0.811), Model J는 10월(NSE=0.799)에 가장 양호한 증발량 모의결과를 보였다. 전주지역의 경우 Model G는 9월 (NSE=0.501), Model H와 I는 5월(NSE=0.797, 0.846), Model J는 9월(NSE=0.783)에 가장 양호한 증발량 모의결과를 보였 다. 부산지역의 경우 Model G는 8월(NSE=0.702), Model H, I, J는 4월(NSE=0.969, 0.979, 0.976)에 가장 양호한 증발량 모 의결과를 보였다. 목포지역의 경우 Model G와 H는 7월(NSE= 0.638, 0.682), Model I와 J는 6월(NSE=0.855, 0.844)에 가장 양호한 증발량 모의결과를 보였다. 제주지역의 경우 Model G는 8월(NSE=0.645), Model H와 I는 7월(NSE=0.826, 0.886), Model J는 6월(NSE=0.869)에 가장 양호한 증발량 모의결과 를 보였다. 따라서 4개의 모형 모두 11개 관측지점에서 겨울철 (1,2,12월)이 다른 계절보다 양호하지 않은 증발량 모의결과 를 보였으며, 여름철(6,7,8월)이 다른 계절보다 양호한 증발량 모의결과를 보였다. 특히 Model I의 경우 1, 2, 3, 9, 10, 11, 12 월은 다른 월에 비해서 양호하지 않은 증발량 모의결과를 보 인 반면에 5,6,7,8월은 다른 월에 비해서 양호한 증발량 모의 결과를 보였다.

Model I를 이용하여 산정된 증발량과 관측된 증발량을 비 교한 바에 의하면 서울지역의 경우 1월 산정 증발량은 38.29 mm, 관측 증발량은 38.92 mm, 2월 산정 증발량은 46.93 mm, 관측 증발량은 47.42 mm, 3월 산정 증발량은 82.97 mm, 관측 증발량은 83.71 mm, 4월 산정 증발량은 118.60 mm, 관측 증발 량은 119.53 mm, 5월 산정 증발량은 143.27 mm, 관측 증발량 은 144.29 mm, 6월 산정 증발량은 139.47 mm, 관측 증발량은 140.54 mm, 7월 산정 증발량은 109.29 mm, 관측 증발량은 110.18 mm, 8월 산정 증발량은 122.44 mm, 관측 증발량은 123.84 mm, 9월 산정 증발량은 108.59 mm, 관측 증발량은 109.71 mm, 10월 산정 증발량은 89.75 mm, 관측 증발량은 90.55 mm, 11월 산정 증발량은 52.96 mm, 관측 증발량은 53.62 mm, 12월 산정 증발량은 39.24 mm, 관측 증발량은 39.77 mm였다. 비교 결과 모든 월에서 산정된 증발량과 관측 된 증발량이 유사한 모의 결과를 보였다. 다른 기상관측 지점 역시 서울지역과 유사하게 Model I로 산정된 증발량이 관측 된 증발량보다 작은 증발량 값을 보였으나 다른 모형과 비교 하여 가장 양호한 증발량 모의결과를 보였다.

11개 지역 전체의 기상자료(풍속, 상대습도, 기온, 일사량) 의 평균값을 독립변수로 적용하여 유도된 일반화된 모형인 Model G의 증발량 모의결과를 다른 연구자들에 의해서 제안 된 모형들(Models A~F)의 증발량 모의결과와 비교하였다. 비교한 바에 의하면 전반적으로 인천과 포항을 제외한 모든 다른 연구지역에서 Model G가 더 양호한 증발량 모의결과를 보였다. 특히 서울, 수원, 청주, 부산, 목포지역의 경우 모든 월 에서 기존에 제안된 모형들에 비해서 양호한 증발량 산정결과 를 보였다. 반면에 일부지역과 월에서 기존 연구자들에 의해 서 제안된 모형이 본 연구에서 제안된 모형들(Models G~H) 보다 더 양호한 모의 결과를 보였다. 인천지역의 경우 1월은 Model E, 2월은 Model A, 6, 7, 8월은 Model F 그리고 9, 10월 은 Model C가 가장 양호한 모의결과를 보였다. 서산지역의 경우 4월에 Model D, 12월에 Model C가 가장 양호한 모의결 과를 보였다. 대전지역의 경우 10월에 Model F가 가장 양호한 모의결과를 보였다. 포항지역의 경우 1월은 Model A, 2월은 Model D, 3, 4, 5, 6월은 Model B, 10, 11월은 Model B, 12월은 Model D가 가장 양호한 모의결과를 보였다. 전주지역의 경우 7월에 Model F가 가장 양호한 모의결과를 보였다. 제주지역 의 경우 7,9,10월에서 Model B가 가장 양호한 증발량 모의결 과를 보였다. 따라서 기존에 다른 연구자들에 의해서 제시된 모형들(Models A~F)를 대체하여 일반화된 모형인 Model G 를 적용할 수 있을 것으로 판단된다.

가장 양호한 증발량 모의 결과를 보여준 Model I에 대해서 추가로 기상자료를 전반기 자료와 후반기 자료로 구분하여 모 의분석하였다. 전반기 자료를 이용하여 다변량 회귀분석을 실 시하여 다변량회귀식을 도출하고, 후반기 자료를 이용하여 증 발량 모의결과를 검증하였다. 기상자료를 전반기와 후반기로 구분하여 분석하는 경우 가용한 분석자료가 제한적이어서 상 대적으로 자료기간이 긴 연구지역(서울, 인천, 수원, 목포)을 선정하였다. 분석결과에 의하면 전반기 자료를 이용하여 유도 된 다변량 회귀식으로부터 산정된 증발량 산정값은 기존에 다 른 연구자들에 의해서 제시된 모형들(Models A~F)에 비해서 4곳의 연구지역 모두와 모든 월에서 양호한 결과를 보였다.

반면에 후반기 자료를 이용하여 모의된 증발량을 검증하 는 경우 서울지역은 2월(NSE=0.515), 3월(NSE=-0.145), 4월 (NSE=-0.007), 5월(NSE=-1.260), 7월(NSE=0.443)에 기존 모형들(Models A~F)에 비해서 양호한 결과를 보였다. 인천지 역은 3월(NSE=-0.056), 4월(NSE=-0.473), 5월(NSE=0.511), 6월(NSE=0.458), 7월(NSE=0.466), 8월(NSE=0.651), 9월 (NSE=0.522), 12월(NSE=-0.300)에 기존 모형들(Models A~F)에 비해서 양호한 결과를 보였다. 수원지역은 1월(NSE =-1.414), 2월(NSE=0.111), 4월(NSE=0.193), 5월(NSE=0.340), 6월(NSE=0.724), 7월(NSE=0.766), 8월(NSE=0.797), 10월 (NSE=0.141), 11월(NSE=0.057), 12월(NSE=-1.474)에 기 존 모형들(Models A~F)에 비해서 양호한 결과를 보였다. 목 포지역은 1월(NSE=-2.437), 2월(NSE=-0.080), 3월(NSE= 0.236), 4월(NSE=0.718), 5월(NSE=0.775), 6월(NSE=0.568), 7월(NSE=0.542), 8월(NSE=0.614), 11월(NSE=0.338), 12월 (NSE=-0.966)에 기존 모형들(Models A~F)에 비해서 양호 한 결과를 보였다. 따라서 지역 및 월에 따라서 기존 모형들보 다 양호하지 않은 증발량모의 결과를 보이는 것으로 나타나 서, 다변량 선형회귀분석을 적용하여 증발접시계수를 산정 하는 경우 일부 지역과 월에서 제한적으로 적용할 수 있을 것 으로 판단된다.

Model	А		E	3	C	2	Ε)	E	Ξ	F		0	ί	H	I	Ι		J		
Month	NSE	Е	NSE	Е	NSE	Е	NSE	Е	pan E												
1	0.227	40.4	0.273	37.7	-0.808	46.1	0.297	38.7	0.224	40.5	0.165	39.2	0.316	41.0	0.418	38.3	0.421	38.3	0.411	38.3	38.9
2	-0.078	54.2	0.415	50.7	-1.975	61.2	0.313	51.8	-0.086	54.3	0.096	53.4	0.525	49.6	0.639	46.9	0.656	46.9	0.634	47.0	47.4
3	-0.683	94.6	0.034	88.6	-2.826	103.5	-0.026	90.4	-0.691	94.8	-0.448	93.7	0.398	83.2	0.478	83.0	0.477	83.0	-2.719	63.6	83.7
4	-1.459	138.1	-0.241	129.6	-2.498	143.3	-0.436	132.0	-1.503	138.4	-0.970	136.2	0.306	120.3	0.445	118.6	0.468	118.6	0.327	115.0	119.5
5	-1.619	168.1	-0.326	156.3	-1.482	167.9	-0.671	161.3	-1.691	168.7	-1.279	165.4	0.462	146.3	0.539	143.2	0.554	143.3	-		144.3
6	-0.112	159.6	0.513	146.4	0.036	157.4	0.249	154.0	-0.172	160.4	0.121	155.2	0.587	138.5	0.672	139.4	0.676	139.5	0.633	139.3	140.5
7	-0.669	127.3	0.278	114.4	-0.886	128.8	-0.323	124.2	-0.759	128.0	-0.210	122.4	0.347	115.3	0.564	109.1	0.617	109.3	0.542	109.0	110.2
8	0.182	136.0	0.506	123.0	0.196	135.1	0.350	132.3	0.137	136.7	0.391	131.0	0.537	126.8	0.619	122.4	0.651	122.4	-9.826	194.9	123.8
9	-0.201	118.7	0.121	108.5	-0.169	116.8	0.023	114.5	-0.237	119.1	0.073	113.7	0.378	109.9	0.585	108.6	0.606	108.6	0.546	108.4	109.7
10	-0.074	93.5	-0.103	86.2	-0.192	93.8	0.038	89.7	-0.093	93.7	0.083	90.3	0.317	89.8	0.422	89.8	0.462	89.8	0.340	89.7	90.6
11	-0.379	58.0	0.024	53.7	-1.405	61.8	-0.041	55.6	-0.409	58.1	-0.142	56.1	0.273	54.5	0.325	52.9	0.357	53.0	0.325	52.9	53.6
12	-0.423	40.8	-0.479	37.9	-1.675	45.6	-0.320	39.0	-0.422	40.9	-0.283	39.2	-0.038	40.6	0.102	39.2	0.180	39.2	-7.890	24.7	39.8

Table 3. Monthly NSE coefficients at Seoul station

Model	A	L	E	3	C	2	Γ)	E	3	F	7	0	ť	I	ł	1	-		ſ	T
Month	NSE	Е	NSE	Е	NSE	Е	NSE	Е	pan E												
1	0.102	44.1	-0.122	41.2	-0.662	55.5	0.008	42.6	0.113	44.5	0.062	44.0	0.009	42.4	0.201	45.3	0.311	45.6	0.275	45.7	46.9
2	0.282	54.7	0.256	51.2	-0.532	68.2	0.270	52.8	0.271	55.2	0.219	54.6	0.171	49.4	0.252	51.8	0.257	51.9	0.276	51.9	54.2
3	-0.467	88.3	-0.455	82.3	-2.532	106.8	-0.348	85.5	-0.495	89.3	-0.519	88.3	-0.218	79.5	0.058	83.6	0.142	83.7	0.058	83.6	85.4
4	-1.122	122.7	-1.185	114.1	-2.537	139.2	-0.908	118.8	-1.154	124.0	-1.409	122.2	-0.486	11.7	0.108	118.7	0.412	119.4	0.400	119.4	120.1
5	-0.437	146.1	-0.437	133.8	-0.654	156.7	-0.324	141.8	-0.454	147.3	-0.425	146.0	-0.267	131.9	0.281	139.1	0.670	140.6	0.626	140.7	141.3
6	-0.157	142.1	-0.272	128.3	-0.113	147.7	-0.089	138.6	-0.172	143.0	-0.027	139.2	-0.288	125.4	0.275	135.8	0.679	137.9	0.146	136.3	139.0
7	-0.084	125.9	-0.073	111.9	-0.166	131.9	-0.016	123.6	-0.099	126.4	0.072	125.8	-0.029	109.6	0.401	117.2	0.698	118.9	0.311	117.7	120.1
8	-0.084	135.0	-0.177	120.8	-0.047	138.3	-0.016	132.0	-0.100	135.6	0.096	133.6	0.032	120.4	0.375	128.8	0.733	130.2	0.692	130.2	131.2
9	0.216	116.3	-0.039	105.4	0.359	118.4	0.226	113.0	0.222	116.9	0.267	113.2	-0.091	105.6	0.488	114.5	0.690	115.2	0.702	115.2	115.9
10	0.287	93.0	-0.023	85.2	0.455	97.4	0.249	89.9	0.305	93.5	0.244	92.0	-0.033	89.4	0.555	93.9	0.607	94.1	0.484	93.9	95.2
11	-0.191	63.8	-0.092	59.1	-1.646	73.3	-0.033	61.7	-0.224	64.4	-0.309	64.1	0.063	58.0	0.440	59.4	0.565	59.8	0.474	59.8	60.4
12	-0.246	47.2	-0.322	43.9	-2.327	58.1	-0.216	45.6	-0.260	47.6	-0.349	47.3	-0.116	43.8	0.069	45.4	0.105	45.4	-11.97	6 17.7	46.6

Table 4. Monthly NSE coefficients at Incheon station

Table 5. Monthly NSE coefficients at Suwon station

Model	A	L	E	3	(2	Ľ)	E	E	F	7	0	ί	ŀ	I	I		J	i	non E
Month	NSE	Е	NSE	Е	NSE	Е	NSE	Е	pane												
1	-2.073	28.5	-3.122	26.2	-1.420	30.2	-2.515	27.4	-2.057	28.5	-2.247	28.0	-0.384	32.7	0.190	36.4	0.341	36.5	0.054	36.4	37.3
2	-0.642	40.7	-1.495	37.4	-0.276	43.3	-0.959	39.0	-0.621	40.7	-0.822	39.4	-0.160	41.6	0.257	45.2	0.307	45.3	0.234	45.3	46.1
3	-0.417	74.2	-1.217	68.3	-0.173	78.0	-0.653	71.2	-0.390	74.3	-0.610	71.6	0.039	74.7	0.231	77.9	0.377	78.1	0.069	77.9	79.1
4	-1.021	110.4	-2.312	101.7	-0.789	111.8	-1.339	105.9	-0.981	110.6	-1.268	106.6	-0.064	109.2	0.355	114.0	0.431	114.1	0.347	114.2	114.7
5	-1.359	140.0	-2.314	128.0	-1.186	138.1	-1.428	134.8	-1.334	140.4	-1.529	135.8	-0.036	36.6	0.242	141.5	0.534	141.9	0.510	142.0	142.5
6	-0.115	140.5	-0.633	127.3	-0.112	137.7	-0.159	136.0	-0.116	141.0	-0.204	136.1	0.066	133.4	0.326	141.5	0.801	142.9	0.785	142.8	143.3
7	-0.067	122.4	-0.352	109.2	-0.065	121.8	-0.048	119.5	-0.075	122.7	-0.014	119.3	0.009	113.0	0.303	119.3	0.699	121.0	0.693	121.1	122.0
8	-0.036	127.6	-0.368	114.2	-0.064	125.6	-0.040	124.3	-0.043	127.9	0.006	124.2	0.150	121.6	0.418	126.5	0.790	127.8	0.790	127.9	128.7
9	-0.228	103.6	-0.946	93.4	-0.278	101.6	-0.310	100.4	-0.226	103.9	-0.194	100.6	0.116	101.6	0.457	106.5	0.606	107.1	0.581	107.0	107.8
10	-1.903	73.2	-4.187	66.3	-2.014	72.4	-2.553	70.7	-1.863	73.3	-2.516	71.2	-0.302	78.7	0.302	84.8	0.370	84.9	0.303	84.9	85.7
11	-1.847	40.8	-3.335	37.1	-1.558	41.8	-2.337	39.3	-1.819	40.9	-2.255	39.6	-0.590	44.1	0.124	48.9	0.178	49.0	0.105	49.0	49.8
12	-2.486	27.9	-3.628	25.5	-1.960	29.2	-2.919	26.8	-2.467	27.9	-2.728	27.3	-0.695	32.1	0.127	36.3	0.149	36.4	0.117	36.3	37.3

NSE=Nash-Sutcliffe efficiency coefficient; E=estimated evaporation (mm/month); pan E= pan evaporation (mm/month)

Tal	ole 6	5. N	/lonthly	NSE	E coef	ficients	at	Seosan	station
-----	-------	------	----------	-----	--------	----------	----	--------	---------

Model	А	L	E	3	C	2	Γ)	E]	F	7	0	ť	ŀ	I	Ι		J		non E
Month	NSE	Е	NSE	Е	NSE	Е	pane														
1	-0.852	29.6	-1.480	26.9	-0.378	34.4	-1.015	28.7	-0.827	29.8	-1.092	28.5	-0.168	33.3	-0.001	34.9	0.074	35.1	0.022	35.1	36.2
2	-0.126	42.2	-0.510	38.5	-0.177	48.6	-0.225	40.8	-0.114	42.4	-0.284	40.6	0.141	42.8	0.432	44.8	0.550	44.9	0.547	44.9	45.7
3	0.087	76.7	-0.737	70.2	-0.871	87.7	-0.084	74.2	0.100	77.2	-0.455	75.2	0.255	76.4	0.463	78.8	0.479	78.8	-6.262	54.7	79.4
4	0.335	113.1	0.238	103.7	-0.844	123.1	0.462	109.4	0.289	113.8	-0.074	112.4	0.402	108.8	0.609	108.7	0.619	108.6	0.037	100.0	109.2
5	0.119	144.9	0.148	131.7	-0.644	152.5	0.305	140.8	0.053	145.8	0.088	141.0	0.360	132.4	0.627	137.9	0.670	138.0	0.654	137.9	138.5
6	-0.122	143.4	0.045	128.9	-0.421	146.7	0.028	139.8	-0.165	144.1	0.068	138.1	0.314	130.5	0.443	133.1	0.890	134.2	0.873	134.1	134.6
7	-0.607	125.0	-0.068	110.6	-1.221	130.2	-0.438	122.8	-0.637	125.3	-0.614	124.1	0.108	111.7	0.438	111.6	0.754	112.2	0.740	112.2	113.0
8	0.103	132.3	0.192	117.4	-0.031	135.1	0.217	129.7	0.078	132.7	0.202	129.8	0.474	119.2	0.573	123.0	0.727	123.5	-12.481	195.8	124.3
9	0.344	106.3	0.286	95.1	0.203	108.6	0.378	103.8	0.335	106.7	0.372	103.5	0.430	100.7	0.647	100.9	0.804	101.5	0.751	101.0	102.4
10	-0.214	77.8	-1.702	70.0	-0.029	80.8	-0.477	75.6	-0.188	78.1	-0.609	74.7	0.243	81.4	0.388	82.6	0.582	82.8	0.591	82.8	83.3
11	0.272	44.2	-0.338	40.0	0.305	48.6	0.154	43.0	0.285	44.4	0.132	42.8	0.511	46.9	0.521	46.8	0.603	46.9	-		47.5
12	-0.165	30.2	-0.653	27.4	0.285	34.9	-0.282	29.4	-0.140	30.4	-0.341	29.0	0.187	34.0	0.561	35.1	0.606	35.1	-3.102	19.4	35.9

Table 7. Monthly NSE coefficients at Cheongju station

Model	A		E	3	(2	Γ)	E	3	F	7	0	į	ŀ	I]		J		Г
Month	NSE	Е	NSE	Е	NSE	Е	NSE	Е	pan E												
1	-0.654	29.3	-1.110	26.8	-0.432	31.5	-0.761	28.2	-0.636	29.4	-0.830	28.5	-0.108	32.8	0.140	31.1	0.276	31.3	0.135	31.1	32.3
2	-0.532	43.5	-0.687	40.1	-0.433	46.2	-0.426	41.6	-0.488	43.5	-0.385	41.8	0.041	42.8	0.293	42.5	0.631	42.8	0.635	42.9	43.2
3	-0.546	83.3	-0.423	77.3	-0.540	85.9	-0.188	79.5	-0.467	83.2	-0.158	79.3	0.308	77.9	0.408	78.6	0.611	79.0	0.622	79.1	80.0
4	-0.537	125.4	-0.291	116.8	-0.118	124.3	-0.140	119.5	-0.452	125.2	-0.054	119.4	0.315	114.7	0.522	118.5	0.748	119.0	0.738	119.0	119.3
5	-0.970	161.4	-0.320	149.4	-0.414	155.9	-0.397	154.3	-0.940	161.4	-0.507	155.6	0.334	145.1	0.508	148.0	0.703	148.3	0.683	148.2	148.8
6	-0.384	155.2	-0.060	142.0	-0.019	150.1	-0.063	149.5	-0.398	155.6	-0.312	150.7	0.327	139.1	0.474	144.0	0.796	144.9	0.774	144.7	145.4
7	-0.406	134.1	-0.169	120.5	-0.278	132.8	-0.201	130.5	-0.444	134.6	-0.174	129.7	0.209	121.0	0.364	123.9	0.647	124.9	0.641	124.9	125.8
8	0.025	134.7	-0.208	121.2	0.099	132.6	0.093	131.0	0.009	135.2	0.089	130.6	0.272	126.0	0.456	131.1	0.884	132.3	0.884	132.3	132.5
9	0.171	105.3	-0.102	95.1	0.169	104.1	0.182	102.1	0.161	105.6	0.172	101.8	0.423	102.1	0.514	103.5	0.692	104.2	0.669	104.0	104.6
10	0.324	76.0	-0.601	69.0	0.255	75.5	0.066	73.3	0.334	76.1	0.079	74.4	0.453	80.9	0.626	80.8	0.694	81.0	0.690	80.9	81.4
11	-0.530	42.3	-1.932	38.5	-0.301	43.7	-0.892	40.8	-0.505	42.4	-0.869	41.2	0.154	45.1	0.315	45.6	0.485	45.7	0.477	45.8	46.0
12	-0.754	28.1	-1.571	25.6	-0.375	29.7	-0.973	27.1	-0.736	28.1	-0.966	27.5	0.037	32.4	0.247	31.3	0.674	31.8	0.658	31.8	32.1

Table 8. Monthly NSE coefficients at Daejeon station

Model	A	1	E	3	0	2	Γ)	E	E	F	7	0	j	ŀ	I	1		J		non E
Month	NSE	Е	NSE	Е	NSE	Е	NSE	Е	pane												
1	-0.396	31.3	-0.572	28.7	-0.692	32.7	-0.450	30.0	-0.404	31.3	-0.348	30.9	-0.229	34.0	0.141	30.9	0.334	31.2	0.368	31.2	32.2
2	-0.932	47.8	-0.438	44.2	-1.451	49.6	-0.548	45.7	-0.920	47.8	-0.571	46.3	-0.246	45.9	0.236	41.1	0.591	41.8	0.176	41.2	42.3
3	-2.219	89.3	-0.748	83.0	-2.888	90.9	-1.041	85.1	-2.152	89.1	-0.973	85.3	0.027	81.1	0.476	75.2	0.672	75.5	0.577	75.5	75.8
4	-1.925	135.3	-0.615	126.0	-1.624	133.1	-0.845	128.8	-1.866	135.0	-0.667	127.9	0.187	117.6	0.359	113.7	0.703	113.1	0.697	114.4	114.9
5	-3.478	165.5	-1.237	152.7	-2.430	160.9	-2.022	158.6	-3.530	165.8	-2.452	161.1	0.102	145.7	0.261	140.2	0.563	140.8	0.549	140.7	141.3
6	-2.010	155.9	-0.412	141.9	-1.394	151.7	-1.228	150.5	-2.093	156.4	-1.555	152.3	0.079	140.2	0.457	129.7	0.899	130.7	0.895	130.6	131.0
7	-0.480	141.5	0.465	126.8	-0.414	140.6	-0.170	138.0	-0.529	142.0	-0.127	137.0	0.538	126.0	0.683	117.7	0.881	118.5	0.877	118.5	119.0
8	-0.762	143.8	0.206	129.0	-0.586	141.7	-0.416	140.0	-0.815	144.2	-0.344	139.2	0.350	130.4	0.580	120.0	0.863	121.0	-6.338	177.5	121.6
9	-1.268	110.4	-0.051	99.5	-1.143	109.2	-0.748	107.2	-1.337	110.8	-0.839	107.5	-0.071	104.9	0.663	94.7	0.889	95.2	0.507	94.7	95.4
10	-0.177	79.9	-0.080	72.4	-0.187	79.0	-0.046	77.2	-0.195	80.1	-0.029	77.8	-0.264	82.2	0.421	74.8	0.688	75.2	0.595	75.1	75.7
11	-0.609	44.0	-0.598	40.0	-0.675	44.7	-0.481	42.5	-0.615	44.1	-0.604	43.3	-0.466	46.5	0.252	41.3	0.455	41.6	0.147	41.4	42.3
12	-1.136	29.1	-1.733	26.5	-1.186	30.2	-1.246	28.0	-1.129	29.2	-1.243	28.7	-0.795	33.2	0.313	30.4	0.382	30.4	0.260	30.4	30.9

NSE=Nash-Sutcliffe efficiency coefficient; E=estimated evaporation (mm/month); pan E= pan evaporation (mm/month)

Tab	le 9.	Monthl	/ NSE	coefficients	at Po	hang	station
-----	-------	--------	-------	--------------	-------	------	---------

Model	A	1	E	3	C	2	Γ)	E	2	F	7	0	f	ŀ	ł	I		J		
Month	NSE	Е	NSE	Е	NSE	Е	NSE	Е	NSE	Е	NSE	Е	NSE	Е	NSE	Е	NSE	Е	NSE	Е	pane
1	0.122	70.4	0.026	66.7	-0.265	76.9	0.015	66.7	0.111	70.0	-0.125	67.0	-1.093	56.6	0.342	69.8	0.426	70.0	0.383	69.8	71.0
2	0.496	75.9	0.538	71.8	0.073	81.7	0.544	72.0	0.504	75.5	0.416	73.2	-0.148	59.8	0.616	71.3	0.620	71.4	0.615	71.3	72.5
3	0.030	111.0	0.419	104.4	-0.92	118.3	0.387	105.8	0.023	111.0	0.159	107.4	0.150	88.6	0.732	97.5	0.805	97.8	0.809	97.7	98.3
4	-0.619	148.0	0.131	138.8	-1.258	152.5	0.056	141.6	-0.642	148.4	-0.302	145.4	0.013	121.1	0.738	131.7	0.801	132.0	0.264	123.5	132.4
5	0.374	170.0	0.522	157.3	0.182	173.1	0.489	163.8	0.336	171.0	0.203	172.2	-0.066	144.9	0.677	159.4	0.811	159.8	0.745	159.4	160.7
6	0.295	149.7	0.514	135.7	0.012	153.7	0.447	145.7	0.246	150.6	0.330	145.3	0.372	130.4	0.702	138.1	0.702	138.1	0.701	138.1	139.1
7	0.444	149.3	0.601	134.1	0.331	152.3	0.536	145.8	0.417	150.0	0.488	147.5	0.611	127.9	0.728	135.8	0.805	136.2	0.751	136.0	137.4
8	0.422	147.1	0.508	132.1	0.272	149.7	0.491	143.8	0.396	147.9	0.428	143.0	0.587	132.9	0.649	135.9	0.791	136.6	0.745	136.6	137.6
9	-0.740	113.7	0.084	102.7	-1.463	118.0	-0.396	110.9	0.848	114.4	-0.683	112.0	0.328	101.6	0.358	99.5	0.668	100.2	-18.878	163.2	100.8
10	0.283	106.7	0.437	98.4	0.060	109.0	0.410	102.8	0.252	107.2	0.182	105.6	0.262	96.6	0.555	98.7	0.796	99.4	0.799	99.3	99.9
11	0.288	79.9	0.445	74.8	-0.052	83.1	0.437	76.3	0.287	80.0	0.256	77.3	-0.097	65.4	0.591	74.0	0.668	74.2	-		74.9
12	-0.2	.76	-0.2	273	-1.0	075	-0.1	70	-0.2	217	-0.2	285	-2.185	56.3	0.317	67.2	0.436	67.3	-14.378	39.7	67.8

Model	A		В		С		D		E	E	F		0	ť	ŀ	ł	Ι		J		Г
Month	NSE	Е	pan E																		
1	-0.517	32.2	-0.694	29.4	-0.551	34.0	-0.547	30.9	-0.515	32.2	-0.562	31.7	-0.268	34.1	-0.051	32.5	-0.037	32.6	-0.191	32.5	34.3
2	-0.243	45.8	-0.023	42.1	-0.651	47.9	-0.034	43.9	-0.244	45.9	-0.072	44.7	0.187	44.2	0.264	41.3	0.361	41.5	-3.260	27.4	42.3
3	-0.201	84.7	0.207	78.3	-0.598	87.1	0.130	81.1	-0.202	84.8	0.192	81.8	0.239	79.5	0.560	74.8	0.560	74.7	0.501	74.4	75.7
4	-2.552	127.6	-0.870	118.3	-2.241	125.8	-1.164	121.8	-2.507	127.5	-0.847	122.4	0.124	115.4	0.763	110.8	0.841	111.0	0.733	110.8	111.2
5	-1.282	160.7	0.064	147.8	-0.583	155.4	-0.353	154.1	-1.310	160.9	-0.571	156.6	0.400	144.8	0.797	140.5	0.846	140.7	0.824	140.8	140.9
6	-0.304	154.3	0.321	140.4	0.068	149.4	0.101	149.0	-0.351	154.8	-0.049	150.0	0.414	141.3	0.688	138.0	0.728	138.1	0.720	138.2	138.8
7	-1.060	139.5	0.079	125.1	-0.832	137.5	-0.616	135.8	-1.138	140.0	-0.362	134.5	0.164	127.8	0.693	119.4	0.733	119.5	0.674	119.2	120.1
8	0.193	143.7	0.436	129.2	0.313	140.3	0.355	139.7	0.165	144.2	0.461	138.4	0.406	135.8	0.754	130.7	0.818	131.1	0.774	131.1	131.6
9	0.246	113.3	0.360	102.3	0.341	110.4	0.390	109.7	0.225	113.6	0.357	109.5	0.501	106.6	0.696	105.8	0.830	106.1	0.783	106.1	106.5
10	-0.281	85.3	-0.856	77.6	-0.416	83.7	-0.343	82.2	-0.286	85.5	-0.254	83.4	0.016	85.4	0.502	85.6	0.613	85.6	0.584	85.6	86.0
11	-2.091	47.7	-1.901	43.5	-2.286	48.4	-1.758	45.9	-2.101	47.8	-2.016	46.9	-1.048	48.1	0.209	44.4	0.207	44.4	0.052	44.3	45.1
12	-0.377	32.0	-0.478	29.1	-0.457	33.6	-0.348	30.8	-0.375	32.1	-0.435	31.0	-0.342	34.8	0.134	30.9	0.129	30.9	-0.107	30.8	32.1

Table 10. Monthly NSE coefficients at Jeonju station

Table 11. Monthly NSE coefficients at Busan station

Model	A		В		С		D		E	E	F		G		Н		Ι		J		non E
Month	NSE	Е	NSE	Е	NSE	Е	NSE	Е	NSE	Е	NSE	Е	NSE	Е	NSE	Е	NSE	Е	NSE	Е	pane
1	-6.292	84.9	-4.443	81.2	-12.441	94.2	-4.051	80.6	-6.020	84.6	-3.840	80.5	-0.023	63.5	0.104	62.7	0.406	63.1	0.381	63.1	63.8
2	-4.564	90.2	-2.900	85.8	-9.933	100.4	-2.857	85.9	-4.534	90.2	-3.151	86.8	0.585	67.0	0.639	66.4	0.710	66.5	0.612	66.6	67.0
3	-5.392	123.0	-3.163	116.3	-12.139	138.0	-3.658	118.1	-5.698	123.9	-4.391	120.3	0.425	99.9	0.632	90.3	0.753	90.7	0.717	90.7	91.1
4	0.208	148.5	0.525	139.0	-0.427	162.6	0.402	143.3	0.152	149.9	0.218	148.4	0.905	119.8	0.969	109.3	0.979	109.6	0.976	109.7	109.9
5	-5.432	164.5	-2.183	151.5	-9.154	175.7	-4.026	159.7	-5.906	166.1	-5.804	165.0	-0.142	136.8	0.661	123.5	0.789	123.9	0.788	123.8	124.3
6	-3.711	143.9	-0.973	130.0	-5.970	152.4	-2.858	140.5	-3.985	144.9	-3.287	142.6	0.029	122.1	0.561	111.1	0.667	111.3	0.530	111.5	112.1
7	-1.236	144.8	0.150	129.0	-2.716	155.3	-0.941	142.4	-1.350	145.6	-1.261	145.3	0.682	119.6	0.726	114.9	0.773	115.3	0.765	115.3	116.2
8	-0.871	163.4	0.261	147.2	-1.533	170.1	-0.566	160.1	-0.995	164.7	-0.842	163.2	0.702	136.4	0.769	129.3	0.925	130.1	0.920	130.2	130.4
9	-6.632	137.5	-2.567	125.5	-9.132	143.2	-5.163	134.0	-7.171	138.8	-6.500	136.7	0.127	112.5	0.550	104.1	0.684	104.4	-0.807	90.2	104.8
10	-12.123	128.1	-6.139	119.0	-15.005	131.7	-8.524	123.4	-12.789	128.9	-12,592	128.6	-0.661	106.7	0.234	98.5	0.419	98.6	0.295	98.7	99.0
11	-3.591	95.7	-1.695	89.9	-6.148	101.2	-2.121	91.5	-3.710	96.0	-2.923	93.7	0.577	73.7	0.642	73.9	0.685	73.9	0.656	73.9	74.4
12	-6.420	85.3	-4.025	81.2	-12.383	92.9	-3.879	81.1	-6.280	85.1	-4.130	81.6	0.120	64.2	0.276	65.7	0.474	66.0	0.278	66.0	66.4

NSE=Nash-Sutcliffe efficiency coefficient; E=estimated evaporation (mm/month); pan E= pan evaporation (mm/month)

Table 12. Monthly NSE coefficients at Mokpo station

Model	А		В		С		D		E	2	F	7	0	ì	Н		Ι		J		
Month	NSE	Е	NSE	Е	NSE	Е	NSE	Е	NSE	Е	NSE	Е	NSE	Е	NSE	Е	NSE	Е	NSE	Е	pan E
1	-2.300	53.0	-1.383	49.0	-12.464	69.9	-1.819	51.7	-2.567	53.7	-1.930	51.8	-0.249	44.8	0.180	42.6	0.343	42.9	0.339	42.9	43.8
2	-3.148	60.5	-1.767	55.9	-18.121	79.6	-2.491	59.0	-3.576	61.3	-2.556	58.9	-0.184	51.1	0.271	48.5	0.411	48.8	0.298	48.8	49.5
3	-2.907	95.4	-1.632	88.4	-13.631	118.6	-2.214	92.9	-3.288	96.7	-2.494	93.2	-0.154	81.9	0.082	79.0	0.402	79.5	0.391	79.5	80.4
4	-3.873	127.2	-2.001	117.3	-11.825	146.1	-2.795	123.8	-4.342	128.7	-3.723	125.8	-0.103	109.9	0.388	109.2	0.695	109.7	0.695	109.7	110.1
5	-2.258	154.0	-1.058	140.3	-4.789	168.1	-1.688	150.1	-2.487	155.4	-2.038	153.3	-0.125	130.5	0.067	130.6	0.772	132.3	0.753	133.1	132.9
6	-1.585	143.2	-0.497	128.6	-2.821	152.2	-1.215	140.2	-1.722	144.1	-1.554	143.0	0.083	122.3	0.156	119.7	0.855	121.5	0.844	121.5	122.0
7	-0.474	144.7	0.274	128.6	-1.228	153.8	-0.287	142.3	-0.541	145.3	-0.578	146.0	0.638	124.0	0.682	119.8	0.839	120.6	0.838	120.4	121.4
8	-0.476	160.9	0.180	144.0	-0.886	166.7	-0.267	157.7	-0.558	161.8	-0.426	160.3	0.500	135.8	0.551	137.6	0.798	138.9	-3.496	87.3	139.6
9	-1.725	133.8	-0.552	121.1	-2.783	140.2	-1.231	130.6	-1.918	134.8	-1.585	132.2	0.118	109.9	0.343	112.9	0.688	114.5	0.657	113.6	114.5
10	-3.395	117.0	-1.586	107.5	-7.016	127.1	-2.414	113.8	-3.776	118.2	-3.641	116.6	0.130	99.9	0.347	99.2	0.587	99.4	0.313	99.2	100.0
11	-2.941	77.1	-1.645	71.3	-8.840	90.3	-2.225	75.0	-3.244	78.0	-2.610	76.1	-0.027	65.4	0.360	62.6	0.545	62.8	0.546	62.8	63.4
12	-2.379	55.5	-1.506	51.2	-9.415	70.0	-1.876	54.0	-2.599	56.1	-2.224	54.7	-0.284	47.7	0.163	44.8	0.322	45.0	0.299	44.9	46.0

Table 13. Monthly NSE coefficients at Jeju station

Model	A		В		С		D		E	3	F		0	i	I	I	1		J		Г
Month	NSE	Е	NSE	Е	NSE	Е	NSE	Е	NSE	Е	NSE	Е	NSE	Е	NSE	Е	NSE	Е	NSE	Е	pan E
1	-6.030	68.8	-3.734	64.2	-18.831	84.5	-4.803	66.7	-6.543	69.6	-5.929	68.6	-0.030	49.4	0.502	49.1	0.526	49.1	0.497	49.0	49.7
2	-2.196	71.3	-0.881	66.4	-9.248	85.4	-1.437	69.0	-2.459	72.1	-2.135	71.1	0.370	54.9	0.526	55.8	0.559	55.9	-1.544	43.1	56.6
3	-2.322	103.4	-1.001	96.3	-7.056	117.9	-1.411	99.9	-2.532	104.4	-2.421	103.4	0.229	84.3	0.563	86.1	0.673	86.2	0.613	86.2	86.7
4	-2.598	132.2	-0.864	122.3	-5.573	143.2	-1.494	127.7	-2.827	133.2	-2.742	132.8	0.241	112.5	0.506	111.5	0.666	111.8	0.607	111.8	112.2
5	-0.939	157.3	0.057	144.0	-1.747	164.5	-0.349	152.5	-1.066	158.4	-1.097	157.5	0.318	135.6	0.582	136.7	0.778	137.4	0.777	137.3	137.8
6	-0.415	144.2	0.434	130.0	-1.086	150.6	-0.068	140.8	-0.517	145.1	-0.277	143.1	0.395	125.0	0.734	125.5	0.875	125.9	0.869	125.8	126.2
7	0.430	170.7	0.589	153.7	0.339	174.3	0.543	166.8	0.391	171.8	0.521	169.5	0.483	143.1	0.826	156.3	0.886	156.8	0.865	156.7	157.3
8	-0.066	168.0	0.480	151.7	-0.084	169.8	0.232	163.9	-0.153	169.0	-0.091	167.5	0.645	146.1	0.791	151.0	0.867	151.4	0.864	151.3	151.8
9	-0.305	133.5	0.366	121.3	-0.665	137.0	0.031	129.9	-0.415	134.4	-0.265	131.4	0.013	110.6	0.473	118.7	0.595	119.2	0.549	119.1	120.0
10	-1.058	119.2	-0.187	109.9	-1.905	124.1	-0.360	115.3	-1.217	120.1	-1.536	120.7	-0.279	102.3	0.429	108.9	0.549	108.9	0.492	109.1	109.4
11	-2.964	85.6	-1.191	79.4	-7.237	94.3	-1.881	82.7	-3.246	86.3	-3.031	85.9	0.223	67.2	0.551	70.2	0.585	70.3	0.566	70.3	70.7
12	-8.993	73.7	-5.299	68.8	-26.809	88.2	-6.989	71.4	-9.817	74.6	-8.533	73.2	0.095	54.4	0.420	54.2	0.462	54.3	0.453	54.2	54.7

Fig. 2. A one-to-one relationship between measured and estimated evaporation (applying all stations)

Fig. 2는 11개 기상관측지점에서 관측된 월증발량과 Table 1의 Model G를 이용하여 산정된 월증발량을 1:1로 비교한 결과를 보여준다. 그림에서 보여주는 바와 같이 12월이 다른 월에 비해서 가장 양호한 증발량 모의결과를 보였다. 반면에 4월이 가장 양호하지 않은 모의결과를 보였다. 전반적으로 증 발량이 작은 값에서는 증발량이 과대하게 산정되고, 증발량이 큰 값에서는 증발량이 과소 산정되고 있다. 이는 증발접시 증발 계로부터 측정된 증발량과 기상자료를 이용하여 유도된 식으 로부터 산정된 증발량과의 차이가 반영된 것으로 판단된다. 증발접시증발계의 증발량은 기상요소가 증발에 미치는 영향 이외에 증발접시증발계의 열저류 효과가 반영되어 있다.

4. 요약 및 결론

본 연구에서는 우리나라 11개 기상관측소의 월평균 기상 자료(소형증발접시 증발량, 풍속, 상대습도, 기온, 일사량)를 이용하여, 월별 기상요소가 증발접시계수에 미치는 영향을 분석하였다. 또한 기상관측지점에서 일반적으로 관측되고 있는 기상자료를 독립변수로 하는 다변량 선형회귀분석에 근 거한 증발접시계수를 산정하는 다변량 선형회귀모형의 적용 성을 검토하였다. 이를 위해서 과거 연구자들에 의해서 개발 된 6가지의 증발접시계수 산정모형들과 비교 검토하였다. 이 를 위해 증발접시계수 산정모형들로부터 산정된 증발량과 관 측된 증발량을 비교하여 증발접시계수 산정모형들의 적절성 을 비교 검증하였다.

분석 결과에 의하면 우리나라 11개 기상관측지점에서 증 발접시계수는 1, 2, 3, 7, 11, 12월은 기온에 가장 큰 영향을 받 으며, 4, 5, 6, 8, 9, 10월은 일사량에 가장 큰 영향을 받는 것으로 나타났다. 또한 월별로 증발접시계수 산정에 미치는 기상요 소(풍속, 상대습도, 기온, 일사량)의 중요도가 차이가 있는 것 으로 나타났다. 1월의 경우 기온과 상대습도, 2월의 경우 기온 과 일사량, 3월의 경우 기온과 일사량, 4월의 경우 일사량과 상 대습도, 5월의 경우 일사량과 상대습도, 6월의 경우 일사량과 상대습도, 7월의 경우 기온과 풍속, 8월의 경우 일사량과 상대 습도, 9월의 경우 일사량과 상대습도, 10월의 경우 일사량과 상대습도, 11월의 경우 기온과 일사량, 12월의 경우 기온과 일 사량이 증발접시계수에 가장 크거나 적은 영향을 미쳤다. 모 든 지역과 월에서 각 기상관측 지점별로 풍속, 상대습도, 기온, 일조시간과 가조시간의 비, 일사량을 독립변수로 적용하는 다변량 선형회귀모형이 가장 양호한 증발량 산정 결과를 보였 으나, 모형 검증과정에서 지역 및 월에 따라서 기존 모형들보 다양호하지 않은 증발량모의 결과를 보이는 것으로 나타나서, 다변량 선형회귀분석을 적용하여 증발접시계수를 산정하는 경우 일부 지역과 월에서 제한적으로 적용할 수 있을 것으로 판단된다.

감사의 글

이 논문은 2020학년도 경기대학교 연구년 수혜로 연구되 었음.

Conflicts of Interest

The authors declare no conflict of interest.

References

- Allen, R.G., Peretira, L.S., Raes, D., and Smith, M. (1998). Crop evapotranspiration-guidelines for computing crop water requirements. FAO irrigation and drainage paper 56, FAO, ISBN 92-5-104219-5, Rome, Italy.
- Allen, R.G., Smith, M., Perrier, A., and Periira, L.S. (1994). "An update for the definition of reference evapotranspiration." *International Commission on Irrigation and Drainage Bulletin*, Vol. 43, No. 2, pp. 1-34.
- Alvarez, V.M., Gonzalez-Real, M.M., Baile, A., and Martinez, M. (2007). "A novel approach for estimating the pan coefficient of irrigation water reservoirs: Application to South Spain." *Agricultural Water Management*, Vol. 92, pp. 29-40.
- Cho, H.-K. (1973). "On lake evaporation from climatological data in Korea." *Journal of Korean Association of Hydrological Sciences*, Vol. 6, pp. 5-12.
- Cuenca, R.H. (1989). Irrigation system design: An engineering approach. Prentice Hall, Eaglewood Cliffs, NJ, U.S.
- Doorenbos, J., and Pruitt, W.O. (1977). *Crop water requirements.* Rome, FAO, Irrigation and Drainage paper 24, Rome, Italy.
- Droogers, P., and Allen, R.G. (2002). "Estimating reference evapotranspiration under inaccurate data conditions." *Irrigation and Drainage Systems*, Vol. 16, No. 1, pp. 33-45.
- Fontenot, R.L. (2004). An evaluation of reference evapotranspiration models in Louisina. M.S. Thesis, Louisina State University, LA, U.S., p. 83.
- Fu, G., Liu, C., Chen, S., and Hong, J. (2004). "Investigating the conversion coefficients for free water surface evaporation of different evaporation pans." *Hydrological Processes*, Vol. 18, pp. 2247-2262.

- Harbeck, G.E. (1958). "Water loss investigations Lake Mead studies." U.S. Geological Survey Professional Paper 298, US Government Printing Office, Washington, D.C., U.S.
- Hargreaves, G.H., and Samani, Z.A. (1985). "Reference crop evapotranspiration from temperature." *Applied Engineering in Agriculture*, Vol. 1, No. 1, pp. 96-99.
- Irmak, S., Haman, D.Z, and Jones, J.W. (2002). "Evaluation of Class-A pan coefficients for estimating reference evapotranspiration in humid location." *Journal of Irrigation and Drainage Engineering*, Vol. 128, pp. 153-159.
- Kim, S.-W. (2010). "Modeling of daily pan evaporation using the limited climatic variables and polynomial networks approach." *Proceedings of Korea Water Resources Association*, pp. 1596-1599.
- Makkink, G.F. (1957). "Testing the Penman formula by means of lysimeters." *Journal of the Institution of Water Engineers*, Vol. 11, pp. 277-288.
- Meyer, A.F. (1915). "Computing runoff from and other physical data." *Transactions of the American Society of Civil Engineers*, Vol. 79, pp. 1055-1155.
- Monteith, J.L. (1965). "Evaporation and environment." *Symposia of the Society for Experimental Biology*, Vol. 19, pp. 205-224.
- Nash, J.E., and Sutcliffe, J.V. (1970). "River flow forecasting through conceptual models, 1. A discussion of principles." *Journal of Hydrology*, Vol. 10, pp. 282-290.
- Orang, M. (1998). Potential accuracy of the popular non-linear regression equations for estimating Pan coefficients values in the original and FAO-24 tables. Unpublished California Department of Water Resources Report, Sacramento, CA, U.S.

- Penman, H.L. (1948). "Natural evaporation from open water, bare soil and grass." *Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences*, Vol. 193, pp. 120-145.
- Pereira, A.R., Villanova, N., Pereira, A.S., and Barbieri, V.A. (1995). "A model for the Class-A pan coefficients." *Agricultural Water Management*, Vol. 76, pp. 75-82.
- Priestley, C.H.B., and Taylor, R.J. (1972). "On the assessment of the surface heat flux and evaporation using large-scale parameters." *Monthly Weather Review*, Vol. 100, pp. 81-92.
- Raghuwanshi, N.S., and Wallender, W.W. (1998). "Converting from pan evaporation to evapotranspiration." *Journal of Irrigation* and Drainage Engineering, Vol. 124, pp. 275-277.
- Rim, C.-S. (2020). "Developemnt of pan coefficient model for estimating evaporation: focused on Seoul station." *Journal of Korea Water Resources Association*, Vol. 53, No. 7, pp. 557-567.
- Rohwer, C. (1931). "Evaporation from free water surfaces." *Technical Bulletin 271*, US Department of Agriculture, Washington, D.C., U.S.
- Seo, Y.-M., and Kim, S.-W. (2018). "Pan evaporation modeling using multivariate adaptive regression splines." *Proceedings of Korea Water Resources Association*, pp. 351-354.
- Snyder, R. L. (1992). "Equation for evaporation pan to evapotranspiration conversions." *Journal of Irrigation and Drainage Engineering*, Vol. 118, No. 6, pp. 977-980.
- Trajkovic, S. (2005). "Temperature-based approaches for estimating reference evapotranspiration." *Journal of Irrigation and Drainage Engineering*, Vol. 131, No. 4, pp. 316-323.